×

Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model. (English) Zbl 1028.74044

Summary: The paper describes a method for modelling delamination in fibre-reinforced composite structures with the aid of a decohesive zone model and interface elements. Unless a fine mesh is provided, the resulting load/deflection responses are very non-smooth, and the iterative nonlinear solution procedure may fail. To overcome this problem, the elements around the softening process zone are enriched with hierarchical polynomial functions. The enriched zones change as the analysis proceeds and the cracks propagate. This procedure is implemented using a technique which continually modifies boundary conditions.

MSC:

74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Raju, Engineering Fracture Mechanics 28 pp 251– (1987) · doi:10.1016/0013-7944(87)90220-7
[2] Rice, Journal of Applied Mechanics 35 pp 379– (1968) · doi:10.1115/1.3601206
[3] Sukumar, International Journal for Numerical Methods in Engineering 48 pp 1549– (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[4] Belytschko, International Journal for Numerical Methods in Engineering 45 pp 601– (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[5] Möes, International Journal for Numerical Methods in Engineering 46 pp 131– (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[6] Benzley, International Journal for Numerical Methods in Engineering 8 pp 537– (1974) · Zbl 0282.65087 · doi:10.1002/nme.1620080310
[7] Melenk, Computer Methods in Applied Mechanics and Engineering 139 pp 289– (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[8] Hitchings, Computers and Structures 60 pp 1093– (1996) · Zbl 0918.73215 · doi:10.1016/0045-7949(95)00326-6
[9] Olsson, Composite Structures 36 pp 221– (1996) · doi:10.1016/S0263-8223(96)00079-7
[10] Delamination growth prediction using a finite element approach. In Fracture of Polymers, Composites and Adhesives. (eds). Elsevier: Amsterdam, 2000; 135-147.
[11] Hilleborg, Cement and Concrete Research 6 pp 773– (1976) · doi:10.1016/0008-8846(76)90007-7
[12] Needleman, Journal of the Mechanics and Physics of Solids 38 pp 289– (1990) · doi:10.1016/0022-5096(90)90001-K
[13] Tvergaard, Journal of the Mechanics and Physics of Solids 40 pp 1377– (1992) · Zbl 0775.73218 · doi:10.1016/0022-5096(92)90020-3
[14] Tvergaard, Journal of the Mechanics and Physics of Solids 41 pp 1119– (1993) · Zbl 0775.73219 · doi:10.1016/0022-5096(93)90057-M
[15] Schellekens, International Journal of Solids and Structures 30 pp 1239– (1993) · Zbl 0775.73292 · doi:10.1016/0020-7683(93)90014-X
[16] Corigliano, International Journal of Solids and Structures 30 pp 2779– (1993) · Zbl 0782.73055 · doi:10.1016/0020-7683(93)90154-Y
[17] Allix, Composite Structures 31 pp 61– (1995) · doi:10.1016/0263-8223(95)00002-X
[18] Chaboche, Computational Mechanics 20 pp 3– (1997) · Zbl 0888.73059 · doi:10.1007/s004660050209
[19] Dugdale, Journal of the Mechanics and Physics of Solids 8 pp 100– (1960) · doi:10.1016/0022-5096(60)90013-2
[20] Barenblatt, Advances in Applied Mechanics 7 pp 55– (1962) · doi:10.1016/S0065-2156(08)70121-2
[21] Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Oxford University Press: New York, 1991. · Zbl 0744.73001
[22] de Borst, International Journal for Numerical Methods in Engineering 35 pp 521– (1992) · Zbl 0768.73019 · doi:10.1002/nme.1620350307
[23] Alfano, International Journal for Numerical Methods in Engineering 50 pp 1701– (2001) · Zbl 1011.74066 · doi:10.1002/nme.93
[24] Crisfield, Engineering Computations 13 pp 110– (1996) · Zbl 0983.74575 · doi:10.1108/02644409610128445
[25] Prospectives of non-linear simulation. In Benefiting from Thermal and Mechanical Simulation in Micro-electronics. (eds). Kluwer Academic Publishers: Dordrecht, 2000; 135-150. · doi:10.1007/978-1-4757-3159-0_9
[26] The Finite Element Method. Vol. I: The Basis. Butterworth-Heinemann: Oxford, 2000.
[27] Finite element method and the progressive failure modelling of composite structures. In Computational plasticity: Fundamentals and Applications. Part 1. et al. (eds). CIMNE: Barcelona, 1997; 239-254.
[28] Mi, Journal of Composite Materials 32 pp 1246– (1998) · doi:10.1177/002199839803201401
[29] Qiu, Engineering Fracture Mechanics 68 pp 1755– (2001) · doi:10.1016/S0013-7944(01)00052-2
[30] Numerical simulation of delamination in composites via interface elements. Proceedings (on CR-ROM) of the conference ECCOMAS 2000. CIMNE: Barcelona, 2000.
[31] Crack extension in fiberglass reinforced plastics and a critical examination of the general fracture criterion. TAM Report No. 275, University of Illinois, 1965.
[32] An evaluation of mixed-mode delamination failure criteria. Report NASA, TM 104210, 1992.
[33] Non-Linear Finite Element Analysis of Solids and Structures, Vol. 2. Advanced Topics. Wiley: Chichester, U.K., 1997.
[34] Non-Linear Finite Element Analysis of Solids and Structures, Vol. 1. Wiley: Chichester, U.K., 1991.
[35] Crisfield, Computers and Structures 13 pp 55– (1981) · Zbl 0479.73031 · doi:10.1016/0045-7949(81)90108-5
[36] Shi, Communications in Numerical Methods in Engineering 11 pp 793– (1995) · Zbl 0855.65055 · doi:10.1002/cnm.1640111003
[37] Robinson, Journal of Composite Materials 26 pp 1554– (1992) · doi:10.1177/002199839202601101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.