×

Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: A comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions. (English) Zbl 1028.65086

Summary: The Fourier-sine-with-mapping pseudospectral algorithm of E. Fattal, R. Baer, and R. Kostoff [Phase space approach for optimizing grid representations: The mapped Fourier method. Phys. Rev. E 53, 1217 (1996)] has been applied in several quantum physics problems. Here, we compare it with pseudospectral methods using Laguerre functions and rational Chebyshev functions. We show that Laguerre and Chebyshev expansions are better suited for solving problems in the interval \(r\in [0,\infty]\) (for example, the Coulomb–Schrödinger equation), than the Fourier-sine-mapping scheme. All three methods give similar accuracy for the hydrogen atom when the scaling parameter \(L\) is optimum, but the Laguerre and Chebyshev methods are less sensitive to variations in \(L\). We introduce a new variant of rational Chebyshev functions which has a more uniform spacing of grid points for large \(r\), and gives somewhat better results than the rational Chebyshev functions of J. P. Boyd [J. Comput. Phys. 70, 63-88 (1987; Zbl 0614.42013)].

MSC:

65L15 Numerical solution of eigenvalue problems involving ordinary differential equations

Citations:

Zbl 0614.42013
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1965), Dover: Dover New York · Zbl 0515.33001
[2] Banerjee, K., Hermite function solution of quantum anharmonic oscillator, Proc. R. Soc. Lond. A, 364, 264 (1978)
[3] Banerjee, K.; Bhatnagar, S. P.; Choudhury, V.; Kanwal, S. S., Anharmonic-oscillator, Proc. R. Soc. Lond. A, 360, 575 (1978)
[4] Bardsley, J. N., Case Stud. Atom. Phys., 4, 302 (1974)
[5] Borisov, A. G., Solution of the radial Schrödinger equation in cylindrical and spherical coordinates by mapped Fourier transform algorithms, J. Chem. Phys., 114, 7770 (2001)
[6] Boyd, J. P., Spectral and pseudospectral methods for eigenvalue and nonseparable boundary value problems, Mon. Weather Rev., 106, 1192 (1978)
[7] Boyd, J. P., The choice of spectral functions on a sphere for boundary and eigenvalue problems: a comparison of Chebyshev, Fourier, and Associated expansions, Mon. Weather Rev., 106, 1184 (1978)
[8] Boyd, J. P., The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J. Comp. Phys., 45, 43 (1982) · Zbl 0488.65035
[9] Boyd, J. P., Orthogonal rational functions on a semi-infinite interval, J. Comp. Phys., 70, 63 (1987) · Zbl 0614.42013
[10] Boyd, J. P., Spectral methods using rational basis functions on an infinite interval, J. Comp. Phys., 69, 112 (1987) · Zbl 0615.65090
[11] Boyd, J. P., Chebyshev domain truncation is inferior to Fourier domain truncation for solving problems on an infinite interval, J. Sci. Comp., 3, 109 (1988) · Zbl 0666.65099
[12] Boyd, J. P., The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the Weideman-Cloot sinh-Mapping for pseudospectral computations on an infinite interval, J. Comp. Phys., 110, 360 (1994) · Zbl 0806.65146
[13] Corrigendum, 136, 227 (1997)
[14] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover: Dover Mineola, NY · Zbl 0987.65122
[15] Cloot, A.; Weideman, J. A.C., Spectral methods and mappings for evolution equations on the infinite line, Comput. Meth. Appl. Mech. Eng., 80, 467 (1990) · Zbl 0732.65095
[16] Cloot, A.; Weideman, J. A.C., An adaptive algorithm for spectral computations on unbounded domains, J. Comput. Phys., 102, 398 (1992) · Zbl 0760.65095
[17] Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration (1984), Academic Press: Academic Press Boston · Zbl 0154.17802
[18] Falqués, A.; Iranzo, V., Edge waves on a longshore shear flow, Phys. Fluids, 4, 2169 (1992) · Zbl 0763.76010
[19] Fattal, E.; Baer, R.; Kosloff, R., Phase space approach for optimizing grid representations: the mapped Fourier method, Phys. Rev. E, 53, 1217 (1996)
[20] Friedrich, H., Theoretical Atomic Physics (1990), Springer: Springer New York
[21] Lemoine, D., Optimized grid representations in curvilinear coordinates: the mapped sine Fourier method, Chem. Phys. Lett., 320, 492 (2000)
[22] Lin, S.-H.; Pierrehumbert, R. T., Does Ekman friction suppress baroclinic instability?, J. Atmos. Sci., 45, 2920 (1988)
[23] Nest, M.; Meyer, H.-D., Improving the mapping mechanism of the mapped Fourier method, Chem. Phys. Lett., 352, 486 (2002)
[24] Robson, R. E.; Prytz, A., The discrete ordinate/pseudo-spectral method: review and application from a physicist’s perspective, Austral. J. Phys., 46, 465 (1993)
[25] Tao Tang, The Hermite spectral method for Gaussian-type functions, SIAM J. Sci. Comput., 14, 594 (1993) · Zbl 0782.65110
[26] Weideman, J. A.C.; Reddy, S. C., A MATLAB differentiation matrix suite, ACM Trans. Math. Software, 26, 465 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.