×

The classification of the largest caps in AG(5, 3). (English) Zbl 1023.51007

Let us denote with \(S_{n, q}\) either the finite affine space \(\text{AG}(n, q)\) or the finite projective space \(\text{PG}(n, q)\). A \(k\)-cap \(K\) of \(S_{n, q}\) is a set of \(k\) points in \(S_{n,q}\) such that no three points are collinear. A \(k\)-cap of \(S_{n, q}\) is complete when it cannot be extended to a larger cap of \(S_{n, q}\).
The main problem in the theory of caps is to find the maximal size of a cap in \(S_{n, q}\).
In \(S_{2, q}\), there are at most \((q + 1)\)-caps if \(q\) is odd, and when \(q\) is even there are at most \((q + 2)\)-caps. In \(\text{AG}(3, q)\), \(q >2\), the maximal size of a cap is \(q^2\), and in \(\text{PG}(3, q)\), \(q > 2\), the maximal size of a cap is \(q^2 + 1\). And in \(S_{n,2}\) the maximal size of a cap is \(2^n\).
In the paper under review the authors focus on the maximal size of a cap in \(\text{AG}(5, 3)\) and its relation to the \(56\)-cap in \(\text{PG}(3, q)\) (the Hill cap). In [A. Bruen, L. Haddad and D. Wehlau, Des. Codes Cryptography 13, 51-55 (1998; Zbl 0892.05010)] it is proved that the size of a cap in \(\text{AG}(5, 3)\) is at most \(48\).
The Hill cap intersects a hyperplane of \(\text{PG}(5, 3)\) in either \(20\) or \(11\) points. Hence, defining \(\text{AG}(5, 3)\) to be \(\text{PG}(5, 3)\) less an \(11\)-hyperplane of this \(56\)-cap, we obtain that there exists a \(45\)-cap in \(\text{AG}(5, 3)\).
The authors prove the following result:
The maximal size of a cap in \(\text{AG}(5, 3)\) is equal to \(45\), and every \(45\)-cap in \(\text{AG}(5, 3)\) is obtained by deleting an \(11\)-hyperplane from a \(56\)-cap in \(\text{PG}(5, 3)\). Moreover, there is a unique type of \(45\)-caps in \(\text{AG}(5, 3)\).

MSC:

51E21 Blocking sets, ovals, \(k\)-arcs
05B25 Combinatorial aspects of finite geometries

Citations:

Zbl 0892.05010
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Barlotti, A., Un’ estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital., 10, 96-98 (1955)
[2] Bierbrauer, J.; Edel, Y., Bounds on affine caps, J. Combin. Des., 10, 111-115 (2002) · Zbl 1005.51003
[3] Bose, R. C., Mathematical theory of the symmetrical factorial design, Sankhyā, 8, 107-166 (1947) · Zbl 0038.09601
[4] Bruen, A.; Haddad, L.; Wehlau, D., Caps and colouring Steiner triple systems, Des. Codes Cryptogr., 13, 51-55 (1998) · Zbl 0892.05010
[5] Dodunekov, S.; Simonis, J., Codes and projective multisets, Electron. J. Combin., 5, R37 (1998) · Zbl 0928.94009
[6] Edel, Y.; Bierbrauer, J., 41 is the largest size of a cap in PG(4,4), Des. Codes Cryptogr., 16, 151-160 (1999) · Zbl 0935.51008
[7] Hill, R., On the largest size of cap in \(S5,3\), Atti Accad. Naz. Lincei Rend., 54, 378-384 (1973)
[8] Hill, R., Caps and codes, Discrete Math., 22, 111-137 (1978) · Zbl 0391.51005
[9] Hill, R., On Pellegrino’s 20-caps in \(S4,3\), “Combinatorial Geometries and their Applications,” Rome 1981, Ann. Discrete Math., 18, 443-448 (1983)
[10] Hill, R.; Landjev, I.; Jones, Ch; Storme, L.; Barát, J., On complete caps in the projective geometries over F3, J. Geom., 67, 127-144 (2000) · Zbl 0971.51005
[11] Hirschfeld, J. W.P, Finite Projective Spaces of Three Dimensions (1985), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0574.51001
[12] Hirschfeld, J. W.P; Storme, L., The packing problem in statistics, coding theory and finite projective spaces: update 2001, (Blokhuis, A.; Hirschfeld, J. W.P; Jungnickel, D.; Thas, J. A., Proceedings of the Fourth Isle of Thorns Conference. Proceedings of the Fourth Isle of Thorns Conference, Developments in Mathematics, 3 (2001), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 201-246 · Zbl 1025.51012
[13] Honold, Th; Landjev, I., Linear codes over finite chain rings, Electron. J. Combin., 7, R11 (2000) · Zbl 1025.94017
[14] Meshulam, R., On subsets of finite abelian groups with no 3-term arithmetic progression, J. Combin. Theory Ser. A, 71, 168-172 (1995) · Zbl 0832.11006
[15] Panella, G., Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito, Boll. Un. Mat. Ital., 10, 507-513 (1955) · Zbl 0066.38902
[16] Pellegrino, G., Sul massimo ordine delle calotte in \(S4,3\), Mathematiche, 25, 149-157 (1971)
[17] Qvist, B., Some remarks concerning curves of the second degree in a finite plane, Ann. Acad. Sci. Fenn. Ser. A, 134 (1952) · Zbl 0049.10801
[18] Segre, B., Sulle ovali nei piani lineari finiti, Atti Accad. Naz. Lincei Rend., 17, 1-2 (1954) · Zbl 0057.36301
[19] Segre, B., Ovals in a finite projective plane, Canad. J. Math., 7, 414-416 (1955) · Zbl 0065.13402
[20] Segre, B., Le geometrie di Galois, Ann. Mat. Pura Appl., 48, 1-97 (1959) · Zbl 0093.33604
[21] Tits, J., Ovoides et groupes de Suzuki, Arch. Math., 13, 187-198 (1962) · Zbl 0109.39402
[22] van Eupen, M.; Lisonek, P., Classification of some optimal ternary linear codes of small length, Des. Codes Cryptogr., 10, 63-84 (1997) · Zbl 0869.94031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.