×

A sufficient condition for compactness of the \(\overline{\partial}\)-Neumann operator. (English) Zbl 1023.32029

D. W. Catlin has proved [Proc. Symp. Pure Math. 41, 39-49 (1984; Zbl 0578.32031)] that if a domain \(\Omega\) satisfies the so-called condition \((P_1)\) (i.e. forall \(M>0\) there exists \(\varphi\in C^1(\Omega)\) such that \[ |\xi |\leq 1\text{ on }\Omega,\tag{1} \]
\[ \sum_{k,l} {\partial^2 \varphi \over\partial z_l\partial \overline z_k}(p)\xi_k \overline\xi_l\geq M\|\xi \|^2 \text{ for }p\in b\Omega\text{ and }\xi\in \mathbb{C}^n),\tag{2} \] then the \(\overline \partial\)-Neumann operator acting on \((0,1)\)-forms is compact.
The author gives a weaker condition, \((\widetilde P_q)\), which, if satisfied by the domain \(\Omega\), ensures the compactness of the \(\overline\partial\)-Neumann operator \(N_q\) (condition \((\widetilde P_q)\) is: for every \(M>0\) there exists \(\varphi= \varphi_M\in C^\infty (\Omega)\) such that (1) \(|\partial \varphi |_{i\partial\overline\partial_f}\leq 1\), (2) The sum of any \(q\) eigenvalues of the matrix \(({\partial^2 \varphi\over \partial z_k\partial \overline z_l})\) is \(\geq M\) for all \(z\in b\Omega)\).
Here \(|\partial \varphi|_{i \partial \overline\partial f}\) denotes the length of the 1-form \(\partial \varphi\) measured in the Kähler metric with fundamental form \(i\partial \overline \partial f\).
If \[ \left|\sum_k{\partial f\over\partial z_k} (z)\xi_k\right |^2\leq c\sum_{k,l} {\partial^2 f\over\partial z_k\partial \overline z_l}(z) \xi_k\overline \xi_l\qquad\text{for all }\xi\in\mathbb{C}^n\text{ and }z\in \Omega, \] the author uses the notation \(|\partial f|_{i\partial \overline \partial f}\leq C\) and says that \(f\in C^2(\Omega) \cup PSH(\Omega)\) has self-bounded complex gradient.
But as \(-e^{-{1\over c}f}\in PSH(\Omega)\) is equivalent with the above inequality, the self-boundedness condition can be interpretated also for non-smooth functions.
The main result is: If \(\Omega\) is a smoothly bounded, pseudoconvex, relatively compact domain in \(\mathbb{C}^n\) and if \(\Omega\) satisfies condition \((\widetilde P_q)\) then \(N_q\) is compact. This follows from a slightly improved Hörmander inequality (Proposition 3.1 and Proposition 3.2), an easy but useful abstract lemma, which ensures the compacity of an operator \(T\) provided it satisfies a family of estimates, and a duality argument.
The author introduces also the condition \((\widetilde P_q)\) in the weak sense (\(\forall M>0\) \(\exists \varphi =\varphi_M\in PSH(\Omega)\) and a neighbourhood \(U\) of \(b\Omega\) such that, in the sense of currents (i) \(\partial \varphi\wedge \overline\partial \varphi\leq i\partial\overline \partial \varphi\) on \(\Omega\), (ii) \(i\partial\overline \partial\geq Mi\partial\overline \partial |z|^2\) in \(U\cap\Omega)\).
By Straube regularity techniques one gets that even \((\widetilde P_q)\) in the weak sense ensures the compactness of the \(\overline\partial\)-Neumann operator \(N_q\) for \(\Omega\) a bounded pseudoconvex domain in \(\mathbb{C}^n\).
The author shows also, in the case of a complex ellipsoid in \(\mathbb{C}^2\), the simplification that the use of the \(\widetilde P_1\) condition, in showing the compactness of \(N_1\), brings in the Catlin construction.

MSC:

32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
32N15 Automorphic functions in symmetric domains

Citations:

Zbl 0578.32031
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barrett, D., Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math., 168, 1-10 (1992) · Zbl 0779.32013
[2] Berndtsson, B., The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier, 46, 1083-1094 (1996) · Zbl 0853.32024
[3] Berndtsson, B., Weighted estimates for the ∂̄ equation, Complex Analysis and Geometry, Proceedings of a Conference at Ohio State University, 9 (2001), Walter De Gruyter: Walter De Gruyter Berlin, p. 43-58
[4] Berndtsson, B.; Charpentier, P., A Sobolev mapping property of the Bergman kernel, Math. Z., 235, 1-10 (2000) · Zbl 0969.32015
[5] Boas, H.; Straube, E., Current Developments in Several Complex Variables, Proceedings of a Special Year at MSRI (1999), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[6] Catlin, D. W., Global regularity of the ∂̄-Neumann problem, Proc. Symp. Pure Math., 41, 39-49 (1984)
[7] Catlin, D. W., Boundary invariants of pseudoconvex domains, Ann. Math., 120, 529-586 (1984) · Zbl 0583.32048
[8] Catlin, D. W.; D’Angelo, J. P., Positivity conditions for bihomogeneous polynomials, Math. Res. Let., 4, 555-567 (1997) · Zbl 0886.32015
[9] Christ, M., Global \(C^∞\) irregularity of the ∂̄-Neumann problem on worm domains, J. Amer. Math. Soc., 9, 1171-1185 (1996) · Zbl 0945.32022
[10] Diederich, K.; Fornæss, J. E., Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math., 39, 129-141 (1977) · Zbl 0353.32025
[11] Diederich, K.; Ohsawa, T., An estimate for the Bergman distance on pseudoconvex domains, Ann. Math., 141, 181-190 (1995) · Zbl 0828.32002
[12] Donnelly, H., \(L^2\) cohomology of the Bergman metric for weakly pseudoconvex domains, Ill. Math. J., 41, 151-160 (1997) · Zbl 0880.32007
[13] Donnelly, H.; Fefferman, C., \(L^2\) cohomology and index theorem for the Bergman metric, Ann. Math., 118, 593-618 (1983) · Zbl 0532.58027
[14] Folland, G. B.; Kohn, J. J., The Neumann problem for the Cauchy-Riemann complex, Ann. Math. Stud. (1972) · Zbl 0247.35093
[15] Fu, S.; Straube, E., Compactness in the ∂̄-Neumann Problem, Complex Analysis and Geometry, Proceedings of a Conference at Ohio State University, 9 (2001), Walter De Gruyter: Walter De Gruyter Berlin, p. 141-160 · Zbl 1011.32025
[16] Fu, S.; Straube, E., Compactness of the ∂̄-Neumann problem on convex domains, J. Func. Anal., 159, 629-641 (1998) · Zbl 0959.32042
[17] Gromov, M., Kähler hyperbolicity and \(L^2\)-Hodge theory, J. Differential Geom., 33, 263-292 (1991) · Zbl 0719.53042
[18] Henkin, G.; Iordan, A., Compactness of the Neumann operator for hyperconvex domains with non-smooth \(B\)-regular boundary, Math. Ann., 307, 151-168 (1997) · Zbl 0869.32009
[19] Henkin, G.; Iordan, A.; Kohn, J. J., Estimations sous-elliptiques pour le problème ∂̄-Neumann dans un domaine strictement pseudoconvexes à frontière lisse par morceaux, C.R. Acad. Sci. Paris, 323, 17-22 (1996) · Zbl 0861.35066
[20] L. Hörmander, \(L^2\); L. Hörmander, \(L^2\)
[21] Kohn, J. J., Propagation of singularities for the Cauchy-Riemann equations, C.I.M.E., Complex Analysis (1973), Bressanone, p. 179-280
[22] Kohn, J. J.; Nirenberg, L., Non-coercive boundary value problems, Comm. Pure Appl. Math., 18, 443-492 (1965) · Zbl 0125.33302
[23] McNeal, J. D., On large values of \(L^2\) holomorphic functions, Math. Res. Lett., 3, 247-259 (1996) · Zbl 0865.32009
[24] McNeal, J. D., Invariant metric estimates for ∂̄ on some pseudoconvex domains, Ark. Math., 39, 121-136 (2001) · Zbl 1038.32004
[25] McNeal, J. D., \(L^2\) harmonic forms on some complete Kähler manifolds, Math. Ann., 323, 319-349 (2002) · Zbl 1013.32016
[26] Michel, J.; Shaw, M.-C., Subelliptic estimates for the ∂̄-Neumann problem on piece-wise smooth strictly pseudoconvex domains, Duke Math. J., 93, 115-128 (1998)
[27] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13, 115-162 (1959) · Zbl 0088.07601
[28] Ohsawa, T., On the extension of \(L^2\) holomorphic functions II, Pub. RIMS, Kyoto Univ., 24, 265-275 (1988) · Zbl 0653.32012
[29] Ohsawa, T., On the extension of \(L^2\) holomorphic functions III: negligible weights, Math. Z., 219, 215-225 (1995) · Zbl 0823.32006
[30] Ohsawa, T.; Takegoshi, K., On the extension of \(L^2\) holomorphic functions, Math. Z., 195, 197-204 (1987) · Zbl 0625.32011
[31] Sibony, N., Une classe de domaines pseudoconvexes, Duke Math. J., 55, 299-319 (1987) · Zbl 0622.32016
[32] Siu, Y.-T., The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Geometric Complex Analysis, Hayama (1996), World Scientific: World Scientific Singapore, p. 577-592 · Zbl 0941.32021
[33] Straube, E., Plurisubharmonic functions and subellipticity of the ∂̄-Neumann problem on non-smooth domains, Math. Res. Lett., 4, 459-467 (1997) · Zbl 0887.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.