×

Ergodic properties of fibered rational maps. (English) Zbl 1021.37019

Let \(X\) be a compact metric space, let \(g \colon X \to X\) be a continuous mapping, and let \(\widehat \mathbb{C}\) denote the Riemann sphere. A rational map of degree \(d\) fibered over \(g\) is a continuous mapping \(f \colon X \times \widehat \mathbb{C}\to X \times \widehat \mathbb{C}\) of the form \[ f(x,z) = (g(x),Q_x(z)) , \] where \(Q_x\) is a rational function of degree \(d\), depending continuously on \(x \in X\). In this paper, the author investigates the ergodic properties of fibered rational maps.
The special case when \(X\) is a point recovers the class of (nonfibered) rational maps of \(\widehat \mathbb{C}\). The study of the ergodic properties of such maps was initiated by H. Brolin [Ark. Mat. 6, 103-144 (1965; Zbl 0127.03401)] (in the case of polynomials), and further developed by A. Freire, A. Lopez and R. Mané [Bol. Soc. Bras. Mat. 14, 45-62 (1983; Zbl 0568.58027)], M. Lyubich [Ergodic Theory Dyn. Syst. 3, 351-385 (1983; Zbl 0537.58035] and R. Mané [Bol. Soc. Bras. Mat. 14, 27-43 (1983; Zbl 0568.58028].
The purpose of this paper is to generalize the above results to the fibered setting. In particular, the author computes the topological entropy of such maps and constructs a measure of maximal relative entropy. The measure is shown to be the unique one with this property.
One motivation for the study of fibered rational maps is that they can be used to understand the dynamics of certain holomorphic mappings in two complex dimensions. The first situation that the author addresses is when \(Y\) is a ruled surface, that is a smooth projective variety with the structure of a \(\mathbb{P}^1\)-bundle \(\pi \colon Y \to X\) over a compact Riemann surface \(X\). He also considers holomorphic mappings of the complex projective plane \(\mathbb{P}^2\).

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37A25 Ergodicity, mixing, rates of mixing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] [AR]Abramov, L. M. andRokhlin, V. A., The entropy of a skew product of measurepreserving transformations,Vestnik Leningrad. Univ. 17:7 (1962), 5–13 (Russian). English transl.:Amer. Math. Soc. Transl. 48 (1966), 255–265.
[2] [B]Bogenschütz, T., Entropy, pressure, and a variational principle for random dynamical systems,Random Comput. Dynam. 1 (1992/93), 99–116.
[3] [Bo]Bowen, R., Entropy for group endomorphisms and homogeneous spaces,Trans. Amer. Math. Soc. 153 (1971), 401–414. · Zbl 0212.29201 · doi:10.1090/S0002-9947-1971-0274707-X
[4] [Br]Brolin, H., Invariant sets under iteration of rational functions,Ark. Mat. 6 (1965), 103–144. · Zbl 0127.03401 · doi:10.1007/BF02591353
[5] [D]Dabija, M., Böttcher divisors,Preprint, 1998.
[6] [FS1]Fornæss, J. E. andSibony, N., Random iterations of rational functions,Ergodic Theory Dynam. Systems 11 (1991), 687–708.
[7] [FS2]Fornæss, J. E. andSibony, N., Critically finite rational maps onP 2, inThe Madison Symposium on Complex Analysis (Nagel, A. and Stout, E. L., eds.), Contemp. Math.137, pp. 245–260, Amer. Math. Soc., Providence, R. I., 1992.
[8] [FS3]Fornæss, J. E. andSibony, N., Complex dynamics in higher dimension, inComplex Potential Theory (Gauthier, P. M. and Sabidussi, G., eds.), pp. 131–186, Kluwer, Dordrecht, 1994.
[9] [FS4]Fornæss, J. E. andSibony, N., Complex dynamics in higher dimension II, inModern Methods in Complex Analysis (Bloom, T., Catlin, D., D’Angelo, J. P. and Siu, Y.-T., eds.), Ann. of Math. Stud.137, pp. 135–182, Princeton Univ. Press, Princeton, N. J., 1995.
[10] [FW]Fornæss, J. E. andWeickert, B., Random iterations inP k , to appear inErgodic Theory Dynam. Systems.
[11] [FLM]Freire, A., Lopez, A. andMañé, R., An invariant measure for rational maps,Bol. Soc. Brasil. Mat. 14 (1983), 45–62. · Zbl 0568.58027 · doi:10.1007/BF02584744
[12] [G]Gromov, M., Entropy, homology and semialgebraic geometry,Astérisque 145–146 (1987), 225–240. · Zbl 0611.58041
[13] [H1]Heinemann, S.-M., Dynamische Aspekte holomorpher Abbildungen inC n ,Ph. D. Thesis, Göttingen, 1994.
[14] [H2]Heinemann S.-M., Julia sets for holomorphic endomorphisms ofC n Ergodic Theory Dynam. Systems 16 (1996), 1275–1296. · Zbl 0874.32008 · doi:10.1017/S0143385700010026
[15] [H3]Heinemann, S.-M., Julia sets of skew products inC 2,Kyushu J. Math. 52 (1998), 299–329. · Zbl 0931.37015 · doi:10.2206/kyushujm.52.299
[16] [HP]Hubbard, J. H. andPapadopol, P., Superattractive fixed points inC n ,Indiana Univ. Math. J. 43 (1994), 321–365. · Zbl 0858.32023 · doi:10.1512/iumj.1994.43.43014
[17] [J]Jonsson, M., Dynamics of polynomial skew products onC 2,Math. Ann. 314 (1999), 403–447. · Zbl 0940.37018 · doi:10.1007/s002080050301
[18] [JW]Jonsson, M. andWeickert, B., A nonalgebraic attractor inP 2, to appear inProc. Amer. Math. Soc.
[19] [K]Kifer, Y.,Ergodic Theory of Radom Transformations, Progress in Probability and Statististics10, Birkhäuser, Boston, Mass., 1986. · Zbl 0604.28014
[20] [KS]Kolyada, S. andSnoha, L., Topological entropy of nonautonomous dynamical systems,Random Comput. Dynam. 4 (1996), 205–233.
[21] [LW]Ledrappier, F. andWalters, P., A relativised variational principle for continuous transformations,J. London Math. Soc. 16 (1977), 568–576. · Zbl 0388.28020 · doi:10.1112/jlms/s2-16.3.568
[22] [L]Lyubich, M., Entropy properties of rational endomorphisms of the Riemann sphere,Ergodic Theory Dynam. Systems 3 (1983), 351–385. · Zbl 0537.58035
[23] [M]Mañé, R., On the uniqueness of the maximizing measure for rational maps,Bol. Soc. Brasil. Mat. 14 (1983), 27–43. · Zbl 0568.58028 · doi:10.1007/BF02584743
[24] [MP]Misiurewicz, M. andPrzytycki, F., Topological entropy and degree of smooth mappings,Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 573–574.
[25] [R]Rokhlin, V. A., Lectures on the theory of entropy of transformations with invariant measures,Uspekhi Mat. Nauk 22:5 (137) (1967), 3–56 (Russian). English transl.:Russian Math. Surveys 22 (1967) 1–52.
[26] [S1]Sester, O., Étude dynamique des polynômes fibrés,Ph. D. thesis, Université de Paris-Sud, 1997.
[27] [S2]Sester, O., Hyperbolicité des polynômes fibrés,Bull. Soc. Math. France 127 (1999), 393–428. · Zbl 0937.37025
[28] [Su]Sumi, H., Skew product maps related to finitely generated rational semigroups,Preprint, 1999.
[29] [U]Ueda, T., Complex dynamical systems on projective spaces,Preprint, 1994. · Zbl 0829.58025
[30] [W]Walters, P.,An Introduction to Ergodic Theory, Graduate Texts in Math.79, Springer-Verlag, New York-Berlin, 1982.
[31] [Y]Young, L. S., Ergodic theory of differentiable dynamical systems, inReal and Complex Dynamical Systems (Branner, B. and Hjorth, P., eds.), pp. 293–336, Kluwer, Dordrecht, 1995. · Zbl 0830.58020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.