×

Global solutions for the Dirac-Proca equations with small initial data in 3+1 space time dimensions. (English) Zbl 1020.35079

The author treats the Dirac-Proca equations (D-P eqs.): \[ i\gamma^\mu \partial_\mu\psi= \gamma^\mu A_\mu(I- \gamma_5)\psi(t, x), \]
\[ \partial_\mu \partial^\mu A^\nu+ M^2A^\nu- \partial^\nu\partial_\mu A^\mu= \langle\gamma^0 \gamma^\nu(I-\gamma_5)\psi,,\psi\rangle/2, \] \(\nu= 0,1,2,3\), \((t,x)\in\mathbb{R}^{1+3}\), with \(\psi(0, x)= \psi_0(x)\in H^{m,m}\), \(A^\nu(0, x)= a^\nu(x)\in H^{m+1,m}\), \(\partial_0 A^\nu(0,x)= b^\nu(x)\in H^{m,m}\), where \(m(\geq 20)\) is an integer. The unique local existence of a smooth solution is standard. Let \(0\leq \varepsilon< 1/4\) and \(\Gamma= (\partial_\mu, \Omega_{\mu j}= x_\mu\partial_j- x_j\partial_\mu)\).
Main results: (1) If \((\psi_0,a^\nu, b^\nu)\) satisfies the estimation \(\|\psi_0\|+\|a^\nu\|+\|b^\nu\|\leq\delta\) for a sufficiently small \(\delta> 0\), and if \(\partial_\mu A^\nu= 0\) holds at \(t=0\), then there exists a unique global solution \((\psi,A^\nu)\) of the Cauchy problem of the D-P eqs.
(2) \((\psi,A^\nu)\) has a unique free profile \((\psi_{+0},a^\nu_+, b^\nu_+)\) such that \(\{\|\psi- \psi_+\|+\|A^\nu- A^\nu_+\|+ \|\partial_0(A^\nu- A^\nu_+)\|\}(t)\to 0\) as \(t\to\infty\), where \((\psi_+, A^\nu_+)\) are the solutions of the linear D-P eqs.
A priori estimates \(\||(\psi, A^\nu)(t)|\|_m\leq C_0\), \(t>0\), with the norm given by \(\Gamma\) prove the results.

MSC:

35Q40 PDEs in connection with quantum mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35L70 Second-order nonlinear hyperbolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aitchison, I. J.R.; Hey, A. J.G., Gauge Theories in Particle Physics, A Practical Introduction (1989), Adam Hilger: Adam Hilger Bristol · Zbl 0972.81591
[2] Bachelot, A., Problèmes de Cauchy globals pour des systèmes de Dirac-Klein-Gordon, Ann. Inst. H. Poincaré Phys. Théor., 48, 387-422 (1988) · Zbl 0672.35071
[3] Choquet-Bruhat, Y.; Christodoulou, D., Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3+1 dimensions, Ann. Sci. École Norm. Sup. (4), 14, 481-506 (1981) · Zbl 0499.35076
[4] Christodoulou, D., Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39, 267-282 (1986) · Zbl 0612.35090
[5] Flato, M.; Simon, J. C.H.; Taflin, E., Asymptotic Completeness, Global Existence and the Infrared Problem for the Maxwell-Dirac Equations. Asymptotic Completeness, Global Existence and the Infrared Problem for the Maxwell-Dirac Equations, Mem. Amer. Math. Soc., 606 (1997), American Mathematical Society: American Mathematical Society Providence · Zbl 0892.35147
[6] Georgiev, V., Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203, 683-698 (1990) · Zbl 0671.35052
[7] Georgiev, V., Small amplitude solutions of the Maxwell-Dirac equations, Indiana Univ. Math. J., 40, 845-883 (1991) · Zbl 0754.35171
[8] Georgiev, V., Decay estimates for the Klein-Gordon equation, Comm. Partial Differential Equations, 17, 1111-1139 (1992) · Zbl 0767.35068
[9] Georgiev, V.; Lucente, S., Weighted Sobolev spaces applied to nonlinear Klein-Gordon equation, C. R. Acad. Sci. Paris Sér. I, 329, 21-26 (1999) · Zbl 0930.35109
[10] Ginibre, J.; Velo, G., Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43, 339-442 (1985) · Zbl 0595.35089
[11] Helgason, S., Groups and Geometric Analysis, Integral Geometry, Invariant Differential Operators, and Spherical Functions (1984), Academic Press: Academic Press Orlando · Zbl 0543.58001
[12] Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0881.35001
[13] Keel, M.; Tao, T., Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math., 121, 629-669 (1999) · Zbl 0931.35105
[14] Klainerman, S., Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38, 321-332 (1985) · Zbl 0635.35059
[15] Klainerman, S., Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space time dimensions, Comm. Pure Appl. Math., 38, 631-641 (1985) · Zbl 0597.35100
[16] Klainerman, S., The null condition and global existence to nonlinear wave equations, Lect. Appl. Math., 23, 293-326 (1986) · Zbl 0599.35105
[17] Kosecki, R., The unit condition and global existence for a class of nonlinear Klein-Gordon equations, J. Differential Equations, 100, 257-268 (1992) · Zbl 0781.35062
[18] Lindblad, H.; Sogge, C. D., Restriction theorems and semilinear Klein-Gordon equations in (1+3) dimensions, Duke Math. J., 85, 227-252 (1996) · Zbl 0865.35077
[19] Ozawa, T.; Tsutaya, K.; Tsutsumi, Y., Normal form and global solutions for the Klein-Gordon-Zakharov equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12, 459-503 (1995) · Zbl 0842.35092
[20] Psarelli, M., Asymptotic behavior of the solutions of Maxwell-Klein-Gordon field equations in 4-dimensional Minkowski space, Comm. Partial Differential Equations, 24, 223-272 (1999) · Zbl 0923.35180
[21] Shatah, J., Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38, 685-696 (1985) · Zbl 0597.35101
[22] Tsutaya, K., Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations, Nonlinear Anal., 27, 1373-1380 (1996) · Zbl 0865.35109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.