×

Littlewood-Paley theory and the \(T(1)\) theorem with non-doubling measures. (English) Zbl 1015.42010

Let \(\mu\) be a Radon measure in \(\mathbb{R}^{d}\) which may be non-doubling, but should satisfy the growth condition, \(\mu(B(x,r))\leq Cr^{n}\) for all \(r\) and \(x\) and some fixed \(n\leq d\). The author develops a Littlewood-Paley theory for functions in \(L^{p}(\mu)\). Moreover, using the Littlewood-Paley decomposition for functions in \(L^{2}(\mu)\) the \(T(1)\) theorem is shown for \(n\)-dimensional Calderón-Zygmund operators, without doubling assumptions.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B35 Function spaces arising in harmonic analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] David, G., Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoamericana, 4, 73-114 (1988) · Zbl 0696.42011
[2] David, G.; Journé, J. L., A boundedness criterion for generalized Calderón-Zygmund operators, Ann. Math., 120, 371-397 (1984) · Zbl 0567.47025
[3] David, G.; Journé, J. L.; Semmes, S., Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana, 1, 1-56 (1985) · Zbl 0604.42014
[4] J. García-Cuerva, and, J. M. Martell, Weighted inequalities and vector-valued Calderón-Zygmund operators on nonhomogeneous spaces, preprint, 1999.; J. García-Cuerva, and, J. M. Martell, Weighted inequalities and vector-valued Calderón-Zygmund operators on nonhomogeneous spaces, preprint, 1999.
[5] Han, Y.; Jawerth, B.; Taibleson, M.; Weiss, G., Littlewood-Paley theory and \(ε\)-families of operators, Colloq. Math., 50/51, 321-359 (1990) · Zbl 0763.46024
[6] Han, Y.; Sawyer, E. T., Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces, Mem. Amer. Math. Soc., 110, 1-126 (1994) · Zbl 0806.42013
[7] J. Mateu, P. Mattila, A. Nicolau, and, J. Orobitg, BMO; J. Mateu, P. Mattila, A. Nicolau, and, J. Orobitg, BMO · Zbl 0964.42009
[8] Meyer, Y., Les nouveaux opérateurs de Calderón-Zygmund: Colloquium in honor of Laurent Schwartz, Astérisque, 131, 237-254 (1985)
[9] Nazarov, F.; Treil, S.; Volberg, A., Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices, 15, 703-726 (1997) · Zbl 0889.42013
[10] Nazarov, F.; Treil, S.; Volberg, A., Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators in nonhomogeneous spaces, Internat. Math. Res. Notices, 9, 463-487 (1998) · Zbl 0918.42009
[11] F. Nazarov, S. Treil, and, A. Volberg, Tb; F. Nazarov, S. Treil, and, A. Volberg, Tb · Zbl 1065.42014
[12] F. Nazarov, S. Treil, and, A. Volberg, Accretive Tb; F. Nazarov, S. Treil, and, A. Volberg, Accretive Tb · Zbl 1065.42014
[13] J. Orobitg, and, C. Pérez, \(A_pR^{n\)
[14] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0821.42001
[15] Tolsa, X., \(L^2\)-boundedness of the Cauchy integral operator for continuous measures, Duke Math. J., 98, 269-304 (1999) · Zbl 0945.30032
[16] Tolsa, X., Cotlar’s inequality and existence of principal values for the Cauchy integral without the doubling condition, J. Reine Angew. Math., 502, 199-235 (1998) · Zbl 0912.42009
[17] Tolsa, X., BMO, \(H^1\), and Calderón-Zygmund operators for non-doubling measures, Math. Ann., 319, 89-149 (2001) · Zbl 0974.42014
[18] Tolsa, X., A proof of the weak (1, 1) inequality for singular integrals with non-doubling measures based on a Calderón-Zygmund decomposition, Publ. Mat., 45, 163-174 (2001) · Zbl 0980.42012
[19] X. Tolsa, Characterization of the atomic space \(H^1\); X. Tolsa, Characterization of the atomic space \(H^1\)
[20] Verdera, J., On the \(T(1)\) theorem for the Cauchy integral, Ark. Mat., 38, 183-199 (2000) · Zbl 1039.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.