×

Operator kernel estimates for functions of generalized Schrödinger operators. (English) Zbl 1013.81009

Summary: We study the decay at large distances of operator kernels of functions of generalized Schrödinger operators, a class of semibounded second order partial differential operators of mathematical physics, which includes the Schrödinger operator, the magnetic Schrödinger operator, and the classical wave operators (i.e., acoustic operator, Maxwell operator, and other second order partial differential operators associated with classical wave equations). We derive an improved Combes-Thomas estimate, obtaining an explicit lower bound on the rate of exponential decay of the operator kernel of the resolvent. We prove that for slowly decreasing smooth functions the operator kernels decay faster than any polynomial.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35P05 General topics in linear spectral theory for PDEs
47F05 General theory of partial differential operators
81U20 \(S\)-matrix theory, etc. in quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near band edges for random Schrödinger operators, Helv. Phys. Acta 70 (1997), no. 1-2, 16 – 43. Papers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker, Part II (Zürich, 1995). · Zbl 0866.35077
[2] J.-M. Combes and P. D. Hislop, Localization for some continuous, random Hamiltonians in \?-dimensions, J. Funct. Anal. 124 (1994), no. 1, 149 – 180. · Zbl 0801.60054 · doi:10.1006/jfan.1994.1103
[3] J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251 – 270. · Zbl 0271.35062
[4] E. B. Davies, Kernel estimates for functions of second order elliptic operators, Quart. J. Math. Oxford Ser. (2) 39 (1988), no. 153, 37 – 46. · Zbl 0652.35024 · doi:10.1093/qmath/39.1.37
[5] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. · Zbl 0699.35006
[6] E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. · Zbl 0893.47004
[7] Alexander Figotin and Abel Klein, Localization of classical waves. I. Acoustic waves, Comm. Math. Phys. 180 (1996), no. 2, 439 – 482. Alexander Figotin and Abel Klein, Localization of classical waves. II. Electromagnetic waves, Comm. Math. Phys. 184 (1997), no. 2, 411 – 441. · Zbl 0878.35110 · doi:10.1007/s002200050066
[8] Alexander Figotin and Abel Klein, Localization of classical waves. I. Acoustic waves, Comm. Math. Phys. 180 (1996), no. 2, 439 – 482. Alexander Figotin and Abel Klein, Localization of classical waves. II. Electromagnetic waves, Comm. Math. Phys. 184 (1997), no. 2, 411 – 441. · Zbl 0878.35110 · doi:10.1007/s002200050066
[9] Germinet, F., Klein, A.: Bootstrap Multiscale Analysis and Localization in random media. Commun. Math. Phys. 222, 415-448 (2001) · Zbl 0982.82030
[10] Germinet, F., Klein, A.: A characterization of the Anderson metal-insulator transport transition. Preprint. · Zbl 1062.82020
[11] B. Helffer and J. Sjöstrand, Équation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 118 – 197 (French). · Zbl 0699.35189 · doi:10.1007/3-540-51783-9_19
[12] Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. · Zbl 0342.47009
[13] Klein, A., Koines, A.: A general framework for localization of classical waves: I. Inhomogeneous media and defect eigenmodes. Math. Phys. Anal. Geom. 4, 97-130 (2001) · Zbl 0987.35154
[14] Klein, A., Koines, A.: A general framework for localization of classical waves: II. Random media. In preparation. · Zbl 1054.35102
[15] Klein, A., Koines, A., Seifert, M.: Generalized eigenfunctions for waves in inhomogeneous media. J. Funct. Anal. 190, 255-291 (2002) · Zbl 1043.35097
[16] Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447 – 526. , https://doi.org/10.1090/S0273-0979-1982-15041-8 Barry Simon, Erratum: ”Schrödinger semigroups”, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 2, 426. · doi:10.1090/S0273-0979-1984-15288-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.