×

A condition on a certain variety of groups. (English) Zbl 1013.20021

Let \(\mathcal V\) be a variety of groups defined by the law \(v(x_1,\dots,x_n)=1\). A group \(G\) is said to be a \({\mathcal V}^*\)-group if for every set of \(n\) infinite subsets \(X_1,\dots,X_n\) of \(G\), there are elements \(g_i\in X_i\) such that \(v(g_1,\dots,g_n)=1\). P. S. Kim, A. Rhemtulla and H. Smith [Houston J. Math. 17, No. 3, 429-437 (1991; Zbl 0744.20033)] asked for which varieties \(\mathcal V\) every infinite \({\mathcal V}^*\)-group is in \(\mathcal V\). Positive answers are known for a number of varieties, including the variety of all Abelian groups, varieties of nilpotent groups of bounded class, and, of particular relevance to this paper, the Burnside variety, \({\mathcal B}_d\), of groups of exponent \(d\).
A related question, posed by C. Delizia [Algebra Colloq. 2, No. 2, 97-104 (1995; Zbl 0839.20047)], asks whether, given varieties \(\mathcal V\) and \(\mathcal W\) defined by the laws \(v(x_1,\dots,x_n)=1\) and \(w(x_1,\dots,x_l)=1\), respectively, \(\mathcal V=\mathcal W\) implies \({\mathcal V}^*={\mathcal W}^*\). In this paper it is shown that, if \(\mathcal V\) is the variety defined by the law \(x_1^{a_1}\cdots x_n^{a_n}=1\), where \(a_1,\dots,a_n\) are nonzero integers with greatest common divisor \(d\), then \({\mathcal V}^*={\mathcal B}_d^*\).

MSC:

20E10 Quasivarieties and varieties of groups
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] A. Abdollahi , A characterization of infinite 3-abelian groups , Arch. Math. ( Basel ), 73 ( 1999 ), pp. 104 - 108 . MR 1703676 | Zbl 0936.20038 · Zbl 0936.20038
[2] C. Delizia , On groups with a nilpotence condition on infinite subsets , Algebra Colloq. , 2 ( 1995 ), pp. 97 - 104 . MR 1329140 | Zbl 0839.20047 · Zbl 0839.20047
[3] G. Endimioni , On a combinatorial problem in varieties of groups , Comm. Algebra , 23 ( 1995 ), pp. 5297 - 5307 . MR 1363602 | Zbl 0859.20021 · Zbl 0859.20021
[4] P.S. Kim - A.H. Rhemtulla - H. Smith , A characterization of infinite metabelian groups , Houston J. Math. , 17 ( 1991 ), pp. 429 - 437 . MR 1126607 | Zbl 0744.20033 · Zbl 0744.20033
[5] P. Longobardi - M. MAJ, A finiteness condition concerning commutators in groups , Houston J. Math. , 19 ( 1993 ), pp. 505 - 512 . MR 1251605 | Zbl 0813.20026 · Zbl 0813.20026
[6] P. Longobardi - M. MAJ - A. RHEMTULLA, Infinite groups in a given variety and Ramsey’s theorem , Comm. Algebra , 20 ( 1992 ), pp. 127 - 139 . MR 1145329 | Zbl 0751.20020 · Zbl 0751.20020
[7] B.H. Neumann , A problem of Paul Erdös on groups , J. Austral. Math. Soc. (Series A ), 21 ( 1976 ), pp. 467 - 472 . MR 419283 | Zbl 0333.05110 · Zbl 0333.05110
[8] A. Yu . OL’SHANSKII, Geometry of defining relations in groups , Kluwer Academic Publishers ( 1991 ). MR 1191619 | Zbl 0732.20019 · Zbl 0732.20019
[9] D.J.S. Robinson , A course in the theory of groups , Springer-Verlag , New York ( 1982 ). MR 648604 | Zbl 0483.20001 · Zbl 0483.20001
[10] L.S. Spiezia , A property of the variety of 2-Engel groups , Rend. Sem. Mat. Univ. Padova , 91 ( 1994 ), pp. 225 - 228 . Numdam | MR 1289638 | Zbl 0816.20027 · Zbl 0816.20027
[11] L.S. Spiezia , A characterization of third Engel groups , Arch. Math. ( Basel ), 64 ( 1995 ), pp. 369 - 373 . MR 1323912 | Zbl 0823.20038 · Zbl 0823.20038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.