×

Electromagnetic control of seawater flow around circular cylinders. (English) Zbl 1011.76100

Summary: We investigate numerically the electromagnetic control of seawater flows over an infinitely long circular cylinder. Stripes of electrodes and magnets, wrapped around the cylinder surface, produce a tangential body force (Lorentz force) that stabilizes the flow. This mechanism delays flow separation, reduces drag and lift, and finally suppresses the von Kármán vortex street. Results from two-dimensional simulations of Navier-Stokes equations in a range \(10< \text{Re}< 300\) and Lorentz force calculation are presented. Emphasis is placed on the disclosure of physical phenomena as well as on quantitative detection of the flow field and forces. It is shown that the drag strongly depends on the geometry of electromagnetic actuator and on its location at the cylinder surface. The effect of flow control increases with larger Reynolds numbers, since the boundary layer thickness and the penetration depth of Lorentz force are closely connected.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76D55 Flow control and optimization for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gailitis, A.; Lielausis, O., On a possibility to reduce the hydrodynamical resistance of a plate in an electrolyte, Appl. Magnetohydrodyn., Rep. of the Phys. Inst. Riga, 12, 143-146 (1961), (in Russian)
[2] Tsinober, A., MHD flow drag reduction, (Bushnell, D. M.; Hefner, J. N., Viscous Drag Reduction in Boundary Layers. Viscous Drag Reduction in Boundary Layers, Progress in Astronautics and Aeronautics, 123 (1989), American Institute of Aeronautics and Astronautics), 327-349
[3] Nosenchuck, D. M.; Brown, G. L., The direct control of wall shear-stresses in a turbulent boundary layer, (So, R. M.C.; Speziale, C. G.; Launder, B. E., Proc. of the Intern. Conf. on Near-Wall Turbulent Flows (1993), Elsevier), 689-698
[4] Henoch, C.; Stace, J., Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force, Phys. Fluids, 7, 6, 1371-1383 (1995)
[5] Crawford, C. H.; Karniadakis, G. E., Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing, Phys. Fluids, 9, 3, 788-806 (1997)
[6] Fan X., Brown G.L., Experiments on the electromagnetic control of turbulence, AIAA-Paper 97-2123, 1997; Fan X., Brown G.L., Experiments on the electromagnetic control of turbulence, AIAA-Paper 97-2123, 1997
[7] O’Sullivan, P. L.; Biringen, S., Direct numerical simulation of low Reynolds number turbulent channel flow with EMHD control, Phys. Fluids, 10, 5, 1169-1181 (1998)
[8] Berger, T. W.; Kim, J.; Lee, C.; Lim, J., Turbulent boundary layer control utilizing the Lorentz force, Phys. Fluids, 12, 3, 631-649 (2000) · Zbl 1149.76316
[9] Weier, T.; Gerbeth, G.; Mutschke, G.; Platacis, E.; Lielausis, O., Experiments on the cylinder wakes stabilization in an electrolytic solution by means of electromagnetic forces localized on the cylinder surface, Exp. Therm. Fluid Sci., 16, 84-91 (1998)
[10] Weier, T.; Gerbeth, G.; Mutschke, G.; Fey, U.; Posdziech, O.; Lielausis, O.; Platacis, E., Some results on electromagnetic control of flow around bodies, (Proc. of the Intern. Symp. on Seawater Drag Reduction, Newport, Rhode Island (1998)), 395-400
[11] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comp. Phys., 97, 415-443 (1991) · Zbl 0738.76050
[12] Henderson, R. D.; Karniadakis, G. E., Unstructured spectral element methods for simulation of turbulent flows, J. Comp. Phys., 122, 191-217 (1995) · Zbl 0840.76070
[13] Henderson, R. D., Details on the drag curve near the onset of vortex shedding, Phys. Fluids, 7, 9, 2102-2104 (1995)
[14] Lange, C., Numerical predictions of heat and momentum transfer from a cylinder in crossflow with implications to hot-wire anemometry (1997), Univ. Erlangen-Nürnberg: Univ. Erlangen-Nürnberg Germany, Diss.
[15] Fey U., Eine neue Gesetzmäßigkeit für die Wirbelfolgefrequenz des Kreiszylinders und Steuerung der Instabilitäten im Bereich 160<Re; Fey U., Eine neue Gesetzmäßigkeit für die Wirbelfolgefrequenz des Kreiszylinders und Steuerung der Instabilitäten im Bereich 160<Re
[16] Leweke, T.; Provansal, M., The flow behind rings: bluff body wakes without end effects, J. Fluid Mech., 288, 265-310 (1995)
[17] Norberg, C., An experimental investigation of the flow around a circular cylinder: influence of aspect ratio, J. Fluid Mech., 258, 287-316 (1994)
[18] Williamson, C. H.K., Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. Fluid Mech., 206, 579-627 (1989)
[19] Jackson, C. P., A finite-element study of the onset of vortex shedding in flow past variously shaped bodies, J. Fluid Mech., 182, 23-45 (1987) · Zbl 0639.76041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.