×

Local theory in critical spaces for compressible viscous and heat-conductive gases. (English) Zbl 1007.35071

Using homogeneous Littlewood-Paley decomposition, harmonic analysis and a priori estimates in Besov spaces, the author examines local existence and uniqueness of solutions for a general model of Newtonian viscous heat-conductive gas under low regularity assumptions on initial data (the velocity and temperature may be discontinuous). The solution is sought in the whole \(n\)-dimensional space, but the author claims that the results can be easily extended to the periodic case. Local well-posedness is shown to hold in Besov-type spaces which are critical with respect to a scaling of the equations, provided that the initial density is close enough to a positive constant. When initial data are more regular, the local well-posedness takes place for any initial density uniformly bounded from zero. This former result lies on new estimates for linear heat equation with non-constant diffusion coefficient. Finally, the author proves some Bernstein-like inequalities for solutions in the whole space.

MSC:

35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
80A20 Heat and mass transfer, heat flow (MSC2010)
35B35 Stability in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1353/ajm.1999.0038 · Zbl 0952.35073 · doi:10.1353/ajm.1999.0038
[2] Bony J.-M., Annales Scientifiques de l’école Normale Supérieure 14 pp 209– (1981) · Zbl 0495.35024 · doi:10.24033/asens.1404
[3] Cannone M., Ondelettes, paraproduits et Navier-Stokes (1995)
[4] DOI: 10.1007/BF02791256 · Zbl 0938.35125 · doi:10.1007/BF02791256
[5] Chemin J.-Y., Prépublication du Laboratoire d’analyse numérique de Paris 6 (1996)
[6] DOI: 10.1006/jdeq.1995.1131 · Zbl 0878.35089 · doi:10.1006/jdeq.1995.1131
[7] DOI: 10.1016/S0021-7824(97)89964-3 · Zbl 0903.76020 · doi:10.1016/S0021-7824(97)89964-3
[8] DOI: 10.1007/s002220000078 · Zbl 0958.35100 · doi:10.1007/s002220000078
[9] Danchin R., Analyse Non Linéaire
[10] Friedman A., Partial differential equations of parabolic type (1964) · Zbl 0144.34903
[11] DOI: 10.1007/BF00276188 · Zbl 0126.42301 · doi:10.1007/BF00276188
[12] DOI: 10.1007/s002050050055 · Zbl 0904.76074 · doi:10.1007/s002050050055
[13] DOI: 10.1512/iumj.1995.44.2003 · Zbl 0842.35076 · doi:10.1512/iumj.1995.44.2003
[14] Itaya N., Journal of Mathematics of Kyoto University 16 pp 413– (1976) · Zbl 0335.35029 · doi:10.1215/kjm/1250522922
[15] DOI: 10.1007/s002200050543 · Zbl 0921.35092 · doi:10.1007/s002200050543
[16] Lions P.-L., Mathematical Topics in Fluid Dynamics 1 (1996)
[17] Lions P.-L., Mathematical topics in fluid mechanics 2 (1998)
[18] Matsumura A., Journal of Mathematics of Kyoto University 20 pp 67– (1980) · Zbl 0429.76040 · doi:10.1215/kjm/1250522322
[19] Nash J., Bulletin de la Société Mathématique de France 90 pp 487– (1962) · Zbl 0113.19405 · doi:10.24033/bsmf.1586
[20] Peetre J., Series 1, in: New thoughts on Besov spaces (1976) · Zbl 0356.46038
[21] Planchon F., Notes aux Comptes-rendus de l’Académie des Sciences de Paris 330 pp 21– (2000)
[22] DOI: 10.1515/9783110812411 · doi:10.1515/9783110812411
[23] DOI: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C · Zbl 0937.35134 · doi:10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.