×

Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. (English) Zbl 1004.15017

Denote by \(\Omega\) a finite dimensional central algebra over a field \(F\) with an involution \(\sigma\) (char\(\Omega \neq 2\)), and by \(\Omega ^{m\times n}\) the set of all \(m\times n\)-matrices over \(\Omega\). For \(A=(a_{ij})\in \Omega ^{m\times n}\) set \(A^*=(\sigma (a_{ji}))\in \Omega ^{n\times m}\), \(A^{(*)}=(\sigma (a_{m-j+1,n-i+1}))\in \Omega ^{n\times m}\), \(A^{\sharp }=(a_{m-i+1,n-j+1})\in \Omega ^{m\times n}\). \(A\) is called (skew)selfconjugate if \(A=A^*\) (if \(A=-A^*\)), per(skew)selfconjugate if \(A=A^{(*)}\) (if \(A=-A^{(*)}\)), centro(skew)symmetric if \(A^{\sharp }=A\) (if \(A^{\sharp }=-A\)). Any two of these three properties imply the third one. \(A\) is bi(skew)symmetric if it is (skew)selfconjugate and per(skew)selfconjugate at the same time.
The paper treats the following system of matrix equations over \(\Omega [\lambda ]: (*)\;A_iX-YB_i=C_i\), \((**)\) \(A_iXB_i-C_iXD_i=E_i\), \(i=1,\ldots ,s\). Necessary and sufficient conditions are given for the existence of bi(skew)symmetric solutions to \((*)\) and \((**)\) over \(\Omega\) and of solutions \((X,Y)\) to \((*)\) where \(X\) is bisymmetric (biskewsymmetric) and \(Y\) is biskewsymmetric (bisymmetric). Auxiliary results dealing with systems of Sylvester equations \(AX-XB=C\) or \(AX-YB=C\) are also presented.
Reviewer: V.P.Kostov (Nice)

MSC:

15A24 Matrix equations and identities
15B33 Matrices over special rings (quaternions, finite fields, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Guralnick, R. M., Roth’s theorems for sets of matrices, Linear Algebra Appl., 71, 113-117 (1985) · Zbl 0584.15006
[2] Guralnick, R. M., Matrix equivalence and isomorphism of modules, Linear Algebra Appl., 43, 125-136 (1982) · Zbl 0493.16015
[3] Guralnick, R. M., Roth’s theorems and decomposition of modules, Linear Algebra Appl., 39, 155-165 (1981) · Zbl 0468.16022
[4] Gustafson, W.; Zelmanowitz, J., On matrix equivalence and matrix equations, Linear Algebra Appl., 27, 219-224 (1979) · Zbl 0419.15009
[5] Hartwig, R., Roth’s equivalence problem in unite regular rings, Proc. Amer. Math. Soc., 59, 39-44 (1976) · Zbl 0347.15005
[6] Gustafson, W., Roth’s theorems over commutative rings, Linear Algebra Appl., 23, 245-251 (1979) · Zbl 0398.15013
[7] Wimmer, H. K., Roth’s theorems for matrix equations with symmetry constraints, Linear Algebra Appl., 199, 357-362 (1994) · Zbl 0796.15014
[8] Hartwig, R., Roth’s removal rule revisited, Linear Algebra Appl., 49, 91-115 (1984) · Zbl 0509.15004
[9] Huang, L.; Liu, J., The extension of Roth’s theorem for matrix equations over a ring, Linear Algebra Appl., 259, 229-235 (1997) · Zbl 0880.15016
[10] Wimmer, H. K., Consistency of a pair of generalized Sylvester equations, IEEE Trans. Automat. Control, 39, 1014-1015 (1994) · Zbl 0807.93011
[11] Wang, Q. W.; Li, S. Z., On the center (skew-) self-conjugate solutions to the systems of matrix equations over a finite dimensional central algebra, Math. Sci. Res. Hot-Line, 12, 11-17 (2001) · Zbl 1085.15501
[12] Roth, W. E., The equation \(AX − YB =C\) and \(AX − XB =C\) in matrices, Proc. Amer. Math. Soc., 3, 392-396 (1952) · Zbl 0047.01901
[13] K.E. Chu, Exclusion theorems for the generalized eigenvalue problem, Numerical Analysis Report NA/11/85, Department of Mathematics, University of Reading, 1985; K.E. Chu, Exclusion theorems for the generalized eigenvalue problem, Numerical Analysis Report NA/11/85, Department of Mathematics, University of Reading, 1985
[14] Epton, M. A., Methods for the solution of \(AXB − CXD =E\) and its application in the numerical solution of implicit ordinary differential equations, BIT, 20, 341-345 (1980) · Zbl 0452.65015
[15] Hernandez, V.; Gasso, M., Explicit solution of the matrix equation \(AXB − CXD =E\), Linear Algebra Appl., 121, 333-344 (1989) · Zbl 0682.15013
[16] Wimmer, H. K., Linear matrix equations: The module theoretic approach, Linear Algebra Appl., 120, 149-164 (1989) · Zbl 0677.15001
[17] Huang, L., The matrix equation \(AXB − GXD =E\) over the quaternion field, Linear Algebra Appl., 234, 197-208 (1996) · Zbl 0840.15017
[18] Cantoni, A.; Butler, P., Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 13, 275-288 (1976) · Zbl 0326.15007
[19] Reid, R. M., Some eigenvalues properties of persymmetric matrices, SIAM Rev., 39, 313-316 (1997) · Zbl 0876.15006
[20] Andrew, A. L., Centrosymmetric matrices, SIAM Rev, 40, 697-698 (1998) · Zbl 0918.15006
[21] Weaver, J. R., Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors, Amer. Math Monthly, 92, 711-717 (1985) · Zbl 0619.15021
[22] Wimmer, H. K., The matrix equation \(X\)−\( AXB =C\) and an analogue of Roth’s theorem, Linear Algebra Appl., 109, 145-147 (1988) · Zbl 0656.15005
[23] Kucera, V.; Zagalak, P., Constant solutions of polynomial equations, Int. J. Contr., 53, 495-502 (1991) · Zbl 0731.15009
[24] Demmel, J., Computing stable eigendecompositions of matrix quadruples, Linear Algebra Appl., 88/89, 139-186 (1987) · Zbl 0627.65032
[25] Drexl, P. K., (Skew Field. Skew Field, London Mathematical Society Lecture Notes, Series 81 (1983), Cambridge)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.