×

Dual pairs and Kostant-Sekiguchi correspondence. I. (English) Zbl 1003.22003

Let \(G=GL(V)\) and \(G'=GL(V')\), where \(V\) and \(V'\) are finite-dimensional vector spaces over \({\mathbb R, C}\), or \({\mathbb H}\) and let \(W=\text{ Hom}(V,V')\oplus\text{ Hom}(V',V)\) with the skew-symmetric form defined by \(\langle(S_1,T_1),(S_2,T_2)\rangle=\text{ Re}\text{ Tr}(S_2T_1-S_1T_2)\). Then, \(G\) and \(G'\) are naturally embedded into \(Sp(W)\) and \((G,G')\) is an irreducible dual pair in \(Sp(W)\) of type II. The moment maps \(\tau:W\to{\mathfrak g}\) and \(\tau':W\to{\mathfrak g}'\) are defined by \(\tau(S,T)=T\cdot S\) and \(\tau'(S,T)=S\cdot T\) respectively. Then the authors show that, for a nilpotent \(G\)-orbit \({\mathfrak g}_\lambda\) \(\subset {\mathfrak g}\), \(\tau'(\tau^{-1}(\overline{{\mathfrak g}_\lambda}))\) is the closure of a single nilpotent orbit \({\mathfrak g}'_\lambda\) \(\subset {\mathfrak g}'\): \[ \tau'(\tau^{-1} ( \overline{{\mathfrak g}_\lambda}))=\overline{{\mathfrak g}'_{\lambda'}}, \] where \(\lambda\) is a partition and \(\lambda'\) is explicitly determined by \(\lambda\).
Let \({\mathfrak g}={\mathfrak p}\oplus{\mathfrak k}\) and \({\mathfrak g}'={\mathfrak p}'\oplus{\mathfrak k}'\) denote the Cartan decompositions of \({\mathfrak g}\) and \({\mathfrak g}'\) and \(K, K'\) the maximal compact subgroups of \(G,G'\) respectively. Let \(J\) be a compatible complex structure on \(W\) and \(W_{\mathbb C}^+\) the \(+i\)-eigenspace of \(J\) on \(W_{\mathbb C}\). Then the moment maps \(\tau_{c}:W_{\mathbb C}\to{\mathfrak g}_{\mathbb C}\) and \(\tau'_{c}:W_{\mathbb C}\to{\mathfrak g}'_{\mathbb C}\) map \(W_{\mathbb C}^+\) to \({\mathfrak p}_{\mathbb C}\) and \({\mathfrak p}'_{\mathbb C}\) respectively. They also show that the orbit structure of \(\tau'_{c}(\tau^{-1}_{c}(\overline{{\mathfrak p}_\lambda}))\) for a nilpotent \(K_{\mathbb C}\)-orbit \({\mathfrak p}_\lambda\subset {\mathfrak p}_{\mathbb C}\) has the same property: \[ \tau'_c(\tau^{-1}_c(\overline{{\mathfrak p}_\lambda})) =\overline{{\mathfrak p}'_{\lambda'}}. \] The first result for \(G\)-orbits follows from the same arguments in the authors’ paper [J. Algebra 190, 518-539 (1997; Zbl 0870.22007)] and the second one for \(K_{\mathbb C}\)-orbits follows from the classification of nilpotent \(K_{\mathbb C}\times K_{\mathbb C}\)-orbits in \(W_{\mathbb C}^+\) in terms of \(ab\)-diagrams. As a consequence of these two results, the following conjecture is proved. Let \({\mathcal O}\) \(\subset {\mathfrak g}\) be a nilpotent \(G\)-orbit. Then \[ S'(\tau'(\tau^{-1}(\overline{\mathcal O}))) =\tau'_c(\tau^{-1}_c(\overline{S({\mathcal O})})), \] where \(S\) and \(S'\) are the Kostant-Sekiguchi correspondences for \(G\) and \(G'\) respectively.

MSC:

22E46 Semisimple Lie groups and their representations

Citations:

Zbl 0870.22007
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Collingwood, D.; McGovern, W., Nilpotent Orbits in Complex Semisimple Lie Algebras (1993), Van Nostrand-Reinhold: Van Nostrand-Reinhold New York · Zbl 0972.17008
[2] Djoković, D., Closures of conjugacy classes in classical real linear Lie groups, Algebra, Carbondale, 1980. Algebra, Carbondale, 1980, Lecture Notes in Mathematics, 848 (1980), Springer-Verlag: Springer-Verlag New York, p. 63-83
[3] Daszkiewicz, A.; Kraśkiewicz, W.; Przebinda, T., Nilpotent orbits and complex dual pairs, J. Algebra, 190, 518-539 (1997) · Zbl 0870.22007
[4] A. Daszkiewicz, W. Kraśkiewicz, and, T. Przebinda, Dual pairs and Kostant-Sekiguchi correspondence II: Classification of nilpotent orbits, preprint.; A. Daszkiewicz, W. Kraśkiewicz, and, T. Przebinda, Dual pairs and Kostant-Sekiguchi correspondence II: Classification of nilpotent orbits, preprint. · Zbl 1107.22007
[5] Daszkiewicz, A.; Przebinda, T., The oscillator character formula, for isometry groups of split forms in deep stable range, Invent. Math., 123, 349-376 (1996) · Zbl 0845.22007
[6] Daszkiewicz, A.; Przebinda, T., The oscillator correspondence of orbital integrals, for pairs of type one in the stable range, Duke Math. J., 82, 1-20 (1996) · Zbl 0859.22008
[7] Howe, R., θ-series and invariant theory, Proc. Sympos. Pure Math., 33, 275-285 (1979) · Zbl 0423.22016
[8] R. Howe, Manuscript on dual pairs, preprint.; R. Howe, Manuscript on dual pairs, preprint.
[9] Howe, R., Wave front sets of representations of Lie groups, Automorphic Forms, Representation Theory and Arithmetic (1981), Tata Institute of Fundamental Research: Tata Institute of Fundamental Research Bombay, p. 117-140
[10] Kraft, H.; Procesi, C., Closures of conjugacy classes of matrices are normal, Invent. Math., 53, 227-247 (1979) · Zbl 0434.14026
[11] Kostant, B.; Rallis, S., Orbits and representations associated with symmetric spaces, Amer. J. Math., 93, 753-809 (1971) · Zbl 0224.22013
[12] Magyar, P.; Weyman, J.; Zelevinski, A., Symplectic multiple flag varieties of finite type, J. Algebra, 230, 245-265 (2000) · Zbl 0996.14023
[13] Ohta, T., The singularities of the closures of nilpotent orbits in certain symmetric pairs, Tôhoku Math. J., 38, 441-468 (1986) · Zbl 0654.22004
[14] Ohta, T., Classification of admissible nilpotent orbits in the classical real Lie algebras, J. Algebra, 136, 290-333 (1991) · Zbl 0715.22022
[15] Rossmann, W., Picard-Lefschetz theory and characters of a semisimple Lie group, Invent. Math., 121, 579-611 (1995) · Zbl 0851.22013
[16] Sekiguchi, J., The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. Res. Inst. Math. Sci., 20, 155-212 (1984) · Zbl 0556.14022
[17] Sekiguchi, J., Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan, 39, 127-138 (1987) · Zbl 0627.22008
[18] Vinberg, E. B., Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Selecta Math. Soviet, 6, 15-35 (1987) · Zbl 0612.17010
[19] Vogan, D., Associated varieties and unipotent representations, Harmonic Analysis on Reductive Groups. Harmonic Analysis on Reductive Groups, Progress in Mathematics, 101 (1991), Birkhauser Boston: Birkhauser Boston Cambridge, p. 315-388 · Zbl 0832.22019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.