×

Spectral (finite) volume method for conservation laws on unstructured grids. Basic formulation. (English) Zbl 0997.65115

Summary: A high-order, conservative, yet efficient method named the spectral volume (SV) method is developed for conservation laws on unstructured grids. The concept of a “spectral volume” is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multidomain spectral methods. Each spectral volume is further subdivided into control volumes, and cell-averaged data from these control volumes are used to reconstruct a high-order approximation in the spectral volume. Then Riemann solvers are used to compute the fluxes at spectral volume boundaries. Cell-averaged state variables in the control volumes are updated independently.
Furthermore, total variation diminishing and total variation bounded limiters are introduced in the SV method to remove/reduce spurious oscillations near discontinuities. Unlike spectral element and multidomain spectral methods, the SV method can be applied to fully unstructured grids. A very desirable feature of the SV method is that the reconstruction is carried out analytically, and the reconstruction stencil is always nonsingular, in contrast to the memory and CPU-intensive reconstruction in a high-order \(k\)-exact finite volume method. Fundamental properties of the SV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

Software:

SHASTA
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation, J. Comput. Phys., 114, 45 (1994) · Zbl 0822.65062
[2] Atkin, H. L.; Shu, C.-W., Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations, AIAA J., 36, 775 (1998)
[3] Balsara, D. S.; Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high-order accuracy, J. Comput. Phys., 160, 405 (2000) · Zbl 0961.65078
[4] T. J. Barth, and, P. O. Frederickson, High-Order Solution of the Euler Equations on Unstructured Grids using Quadratic Reconstruction; T. J. Barth, and, P. O. Frederickson, High-Order Solution of the Euler Equations on Unstructured Grids using Quadratic Reconstruction
[5] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 251 (1997) · Zbl 0902.76056
[6] Boris, J. P.; Book, D. L., Flux-corrected transport I: SHASTA, a fluid transport algorithm that works, J. Comput. Phys., 11, 38 (1973) · Zbl 0251.76004
[7] Book, D. L.; Boris, J. P.; Hain, K., Flux-corrected transport II: Generalization of the method, J. Comput. Phys., 18, 248 (1975) · Zbl 0306.76004
[8] Burbeau, A.; Sagaut, P.; Bruneau, Ch.-H., A problem independent limiter for high order Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 169, 111 (2001) · Zbl 0979.65081
[9] Casper, J.; Atkins, H. L., A Finite volume high-order ENO scheme for two-dimensional hyperbolic systems, J. Comput. Phys., 106, 62 (1993) · Zbl 0774.65066
[10] S. R. Chakravarthy, and, S. Osher, A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws; S. R. Chakravarthy, and, S. Osher, A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws
[11] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comput., 52, 411 (1989) · Zbl 0662.65083
[12] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, J. Comput. Phys., 84, 90 (1989) · Zbl 0677.65093
[13] Cockburn, B.; Hou, S.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comput., 54, 545 (1990) · Zbl 0695.65066
[14] Colella, P.; Woodward, P., The piecewise parabolic method for gas-dynamical simulations, J. Comput. Phys., 54, 174 (1984) · Zbl 0531.76082
[15] M. Delanaye, and, Y. Liu, Quadratic Reconstruction Finite Volume Schemes on 3D Arbitrary Unstructured Polyhedral Grids; M. Delanaye, and, Y. Liu, Quadratic Reconstruction Finite Volume Schemes on 3D Arbitrary Unstructured Polyhedral Grids
[16] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, J. Comput. Phys., 144, 194 (1998) · Zbl 1392.76048
[17] Godunov, S. K., A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 271 (1959) · Zbl 0171.46204
[18] Goodman, J. B.; LeVeque, R. J., On the accuracy of stable schemes for 2D scalar conservation laws, Math. Comput., 45, 15 (1985) · Zbl 0592.65058
[19] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357 (1983) · Zbl 0565.65050
[20] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes III, J. Comput. Phys., 71, 231 (1987) · Zbl 0652.65067
[21] Harten, A., ENO schemes with subcell resolution, J. Comput. Phys., 83, 148 (1989) · Zbl 0696.65078
[22] O. Hassan, K. Morgan, and, J. Peraire, An Implicit Finite Element Method for High Speed Flows; O. Hassan, K. Morgan, and, J. Peraire, An Implicit Finite Element Method for High Speed Flows
[23] Isaacson, E.; Keller, H. B., Analysis of Numerical Methods (1993), Dover: Dover New York · Zbl 0168.13101
[24] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97 (1999) · Zbl 0926.65090
[25] Jiang, G.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202 (1996) · Zbl 0877.65065
[26] Kallinderis, Y.; Khawaja, A.; McMorris, H., Hybrid prismatic/tetrahedral grid generation for complex geometries, AIAA J., 34, 291 (1996) · Zbl 0900.76488
[27] Kopriva, D. A., Multidomain spectral solutions of the Euler gas-dynamics equations, J. Comput. Phys., 96, 428 (1991) · Zbl 0726.76077
[28] Kopriva, D. A.; Kolias, J. H., A conservative staggered-grid Chebyshev multidomain method for compressible flows, J. Comput. Phys., 125, 244 (1996) · Zbl 0847.76069
[29] Liu, M.-S., Mass flux schemes and connection to shock instability, J. Comput. Phys., 160, 623 (2000) · Zbl 0967.76062
[30] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 2000 (1994)
[31] Luo, H.; Sharov, D.; Baum, J. D.; Lohner, R., On the Computation of Compressible Turbulent Flows on Unstructured Grids (2000)
[32] Mavriplis, D. J.; Jameson, A., Multigrid solution of the Navier-Stokes equations on triangular meshes, AIAA J., 28, 1415 (1990)
[33] Osher, S.; Chakravarthy, S., Upwind schemes and boundary conditions with applications to Euler equation in general geometries, J. Comput. Phys., 50, 447 (1983) · Zbl 0518.76060
[34] Osher, S., Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal., 21, 217 (1984) · Zbl 0592.65069
[35] Patera, A. T., A Spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys., 54, 468 (1984) · Zbl 0535.76035
[36] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357 (1981) · Zbl 0474.65066
[37] P. L. Roe, Optimum Upwind Advection on a Triangular Mesh; P. L. Roe, Optimum Upwind Advection on a Triangular Mesh
[38] Shu, C.-W., Total-Variation-Diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9, 1073 (1988) · Zbl 0662.65081
[39] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, edited by A. Quarteroni, Lecture Notes in Mathematics Springer-Verlag, Berlin/New York, 1998., Vol. 1697, p. 325.; C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, edited by A. Quarteroni, Lecture Notes in Mathematics Springer-Verlag, Berlin/New York, 1998., Vol. 1697, p. 325.
[40] Shu, C.-W., TVB uniformly high-order schemes for conservation laws, Math. Comput., 49, 105 (1987) · Zbl 0628.65075
[41] Sonar, T., On families of pointwise optimal finite volume ENO approximations, SIAM J. Numer. Anal., 35, 2350 (1998) · Zbl 0921.65069
[42] Steger, J. L.; Warming, R. F., Flux vector splitting of the inviscid gasdynamics equations with application to finite difference methods, J. Comput. Phys., 40, 263 (1981) · Zbl 0468.76066
[43] van Leer, B., Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 361 (1974) · Zbl 0276.65055
[44] van Leer, B., Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, J. Comput. Phys., 32, 101 (1979) · Zbl 1364.65223
[45] van Leer, B., Flux-vector splitting for the Euler equations, Lect. Notes Phys., 170, 507 (1982)
[46] Venkatakrishnan, V.; Mavriplis, D. J., Implicit solvers for unstructured meshes, J. Comput. Phys., 105, 83 (1993) · Zbl 0783.76065
[47] Wang, Z. J.; Richards, B. E., High-resolution schemes for steady flow computation, J. Comput. Phys., 97, 53 (1991) · Zbl 0738.76055
[48] Wang, Z. J., A fast flux-splitting for all speed flow, Proceedings of Fifteen International Conference on Numerical Methods in Fluid Dynamics, 141 (1997)
[49] Z. J. Wang, and, R. F. Chen, Anisotropic Cartesian Grid Method for Viscous Turbulent Flow; Z. J. Wang, and, R. F. Chen, Anisotropic Cartesian Grid Method for Viscous Turbulent Flow
[50] Yee, H. C., Construction of explicit and implicit symmetric TVD schemes and their applications, J. Comput. Phys., 68, 151 (1987) · Zbl 0621.76026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.