×

Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro. (English) Zbl 0997.14016

From the introduction: The determination of the number of real solutions to a system of polynomial equations is a challenging problem in symbolic and numeric computation with real world applications. Related questions include when a problem of enumerative geometry can have all solutions real and when may a given physical system be controlled by real output feedback. In May 1995, Boris Shapiro and Michael Shapiro communicated to the author a remarkable conjecture connecting these three lines of inquiry. Their conjecture is false – we give full description and present a counterexample in section 5. However, there is considerable evidence for their conjecture if the Schubert cells are in a Grassmann manifold. Here is the simplest (but still very interesting and open) special case of this conjecture: Let \(m,p>1\) be integers and let \(X\) be a \(p\times m\)-matrix of indeterminates. Let \(K(s)\) be the \(m \times (m+p)\)-matrix of polynomials in \(s\) whose \((i,j)\)-th entry is \({j-i \choose i-1} s^{j-i}\). Set \(\varphi_{m,p} (s;X): =\det {K(s) \brack I_p\;X}\), where \(I_p\) is the \(p\times p\) identity matrix.
Conjecture 1.1 (Shapiro and Shapiro). For all integers \(m,p>1\), the polynomial system \(\varphi_{m,p} (1;X)= \varphi_{m,p} (2;X) =\cdots= \varphi_{m,p} (mp;X)=0\) is zero-dimensional with \[ d_{m,p}: ={1!2!3! \cdots(p-2)! (p-1)!\cdot (mp)!\over m!(m+1)!(m+2)! \cdots (m+p-1)!} \] solutions, and all of them are real.
A. Eremenko and A. Gabrielov give a proof of this conjecture when either \(m\) or \(p\) is 2 [Ann. Math. (2) 155, No. 1, 105–129 (2002; see the preceding review Zbl 0997.14014)]. – Conjecture 1.1 is related to a question of Fulton, who asked how many solutions to a problem of enumerative geometry may be real, where that problem consists of counting figures of some kind having a given position with respect to some given (fixed) figures. More examples, including that of 3-planes in \(\mathbb{C}^6\) meeting 9 given 3-planes nontrivially, are found by F. Sottile [in: Algebraic geometry, Proc. Summer Res. Inst., Santa Cruz 1995, Proc. Symp. Pure Math. 62 (pt. 1), 435–447 (1997; Zbl 0890.14030) and J. Pure Appl. Algebra 117/118, 601–615 (1997; Zbl 0889.14026)].

MSC:

14N15 Classical problems, Schubert calculus
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
14Q15 Computational aspects of higher-dimensional varieties
14P99 Real algebraic and real-analytic geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML

References:

[1] Ando T., Linear Algebra Appl. 90 pp 165– (1987) · Zbl 0613.15014 · doi:10.1016/0024-3795(87)90313-2
[2] Berenstein A., Adv. Math. 122 (1) pp 49– (1996) · Zbl 0966.17011 · doi:10.1006/aima.1996.0057
[3] Brockett R. W., IEEE Trans. Automat. Control 26 (1) pp 271– (1981) · Zbl 0462.93026 · doi:10.1109/TAC.1981.1102571
[4] Byrnes C. I., Geometrical methods for the study of linear systems (Cambridge, MA, 1979) pp 85– (1980)
[5] Byrnes C. I., Differential geometric control theory (Houghton, MI, 1982) pp 192– (1983)
[6] Byrnes C. I., Three decades of mathematical system theory pp 31– (1989) · doi:10.1007/BFb0008458
[7] Byrnes C. I., Feedback control of linear and nonlinear systems (Bielefeld/Rome, 1981) pp 9– (1982) · doi:10.1007/BFb0006816
[8] Choi M. D., Math. Z. 195 (4) pp 559– (1987) · Zbl 0654.10024 · doi:10.1007/BF01166704
[9] Choi M. D., K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) 2 pp 103– (1995)
[10] Cox D., Using algebraic geometry (1998) · Zbl 0920.13026
[11] Dietmaier P., Advances in robot kinematics: analysis and control (Salzburg, 1998) pp 7– (1998)
[12] Eisenbud D., Invent. Math. 74 (3) pp 371– (1983) · Zbl 0527.14022 · doi:10.1007/BF01394242
[13] Eisenbud D., Invent. Math. 87 (3) pp 485– (1987) · Zbl 0606.14008 · doi:10.1007/BF01389239
[14] Eremenko A., ”Rational functions with real critical points and B. and M. Shapiro conjecture in real enumerative geometry” (1999)
[15] Faugère J. C., ”FGb”
[16] Faugère J. C., J. Symbolic Comput. 16 (4) pp 329– (1993) · Zbl 0805.13007 · doi:10.1006/jsco.1993.1051
[17] Faugère, J.C., Rouillier, F. and Zimmerman, P. 1998. [Faugère et al. 1998], Personal communication
[18] Fulton W., Introduction to intersection theory in algebraic geometry,, 2. ed. (1996) · Zbl 0913.14001
[19] Fulton W., Young tableaux (1997)
[20] Gonzalez-Vega L., Some tapas of computer algebra pp 121– (1999)
[21] Greuel G.-M., ”Singular, a computer algebra system for polynomial computations (version 1.2)” (1998)
[22] Harris J., Duke Math. J. 46 (4) pp 685– (1979) · Zbl 0433.14040 · doi:10.1215/S0012-7094-79-04635-0
[23] Hilbert D., Math. Ann. 32 pp 342– (1888) · JFM 20.0198.02 · doi:10.1007/BF01443605
[24] Hodge W. V. D., Methods of algebraic geometry 2 (1952)
[25] Huber B., J. Symbolic Comput. 26 (6) pp 767– (1998) · Zbl 1064.14508 · doi:10.1006/jsco.1998.0239
[26] Kleiman S. L., Compositio Math. 28 pp 287– (1974)
[27] Kleiman S. L., Amer. Math. Monthly 79 pp 1061– (1972) · Zbl 0272.14016 · doi:10.2307/2317421
[28] Kushnirenko A. G., Usp. Math. Nauk. 30 pp 266– (1975)
[29] Loewner C., Math. Z. 63 pp 338– (1955) · Zbl 0068.25004 · doi:10.1007/BF01187945
[30] Martin C., SIAM J. Control Optim. 16 (5) pp 743– (1978) · Zbl 0401.93020 · doi:10.1137/0316050
[31] Morse, A. S., Wolovich, W. A. and Anderson, B. D. O. ”Generic pole assignment: Preliminary results”. Proc. of the 20th IEEE Conference on Decision and Control. San Diego: IEEE. [Morse et al. 1981] · Zbl 0513.93024
[32] Ravi, M. S., Rosenthal, J. and Helmke, U. ”On output feedback invariants and cascade equivalence of systems”. Proc. of the 36th IEEE Conference on Decision and Control. pp.4243–4248. San Diego: IEEE. [Ravi et al. 1997]
[33] Ronga F., Rev. Mat. Univ. Complut. Madrid 10 (2) pp 391– (1997)
[34] Rosenthal J., Systems Control Lett. 33 (2) pp 73– (1998) · Zbl 0902.93036 · doi:10.1016/S0167-6911(97)00122-9
[35] Rosenthal J., Systems Control Lett. 26 (4) pp 253– (1995) · Zbl 0877.93057 · doi:10.1016/0167-6911(95)00019-6
[36] Rouillier F., ”Solving zero-dimensional systems through the Rational Univariate Representation” (1998) · Zbl 0932.12008
[37] Rouillier F., ”RealSolving”
[38] Schubert H., Acta. Math. 8 pp 97– (1886) · JFM 18.0632.01 · doi:10.1007/BF02417085
[39] Shapiro B. Z., Topology Appl. 43 (1) pp 65– (1992) · Zbl 0764.32003 · doi:10.1016/0166-8641(92)90154-R
[40] Shapiro B. Z., Linear Algebra Appl. 231 pp 105– (1995) · Zbl 0840.15012 · doi:10.1016/0024-3795(95)90010-1
[41] Sottile F., Algebraic geometry (Santa Cruz, 1995) 1 pp 435– (1997) · Zbl 1081.14080 · doi:10.1090/pspum/062.1/1492531
[42] Sottile F., Duke Math. J. 87 (1) pp 59– (1997) · Zbl 0986.14033 · doi:10.1215/S0012-7094-97-08703-2
[43] Sottile F., J. Pure Appl. Algebra 117 pp 601– (1997) · Zbl 0889.14026 · doi:10.1016/S0022-4049(97)00029-7
[44] Sottile F., ”The conjecture of Shapiro and Shapiro” (1999) · Zbl 0997.14016
[45] Sottile F., Electron. Res. Announc. Amer. Math. Soc. 5 pp 35– (1999) · Zbl 0921.14037 · doi:10.1090/S1079-6762-99-00058-X
[46] Sottile F., J. Amer. Math. Soc. 13 pp 333– (2000) · Zbl 0946.14035 · doi:10.1090/S0894-0347-99-00323-9
[47] Sottile F., Mich. Math. J. (2000)
[48] Strømme S. A., Space curves (Rocca di Papa, 1985) pp 251– (1987) · Zbl 0629.14026
[49] Sturmfels B., Hamiltonian and gradient flows, algorithms and control pp 137– (1994)
[50] Sturmfels B., Amer. Math. Monthly 105 (10) pp 907– (1998) · Zbl 0988.52021 · doi:10.2307/2589283
[51] Syrmos V. L., Automatica (International Federation of Automatic Control) 33 (2) pp 125– (1997)
[52] Verschelde J., ACM Trans. Math. Software 25 (2) pp 251– (1999) · Zbl 0961.65047 · doi:10.1145/317275.317286
[53] Verschelde J., Experiment. Math. 9 (2) pp 183– (2000) · Zbl 1054.14080 · doi:10.1080/10586458.2000.10504645
[54] Willems, J. C. and Hesselink, W. H. ”Generic properties of the pole placement problem”. Proc. of the 7th IFAC Congress. pp.1725–1729. Pittsburgh, PA: International Federation of Automatic Control. [Willems and Hesselink 1978]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.