×

On multicommutators for simple algebraic groups. (English) Zbl 0994.20039

Let \(G\) be a group and \([G,G]\) its commutator subgroup. The authors are interested in the following question: Given an \(n\)-tuple of commutators \([a_i,b_i]\), when is it possible to write \([a_i,b_i]=[g,g_i]\) using the same \(g\in G\) for all \(i\)?
Let \(\Phi_n\) be a mapping of \(G\times G^n\) into \(G^n\) such that \(\Phi_n(g,g_1,\dots,g_n)=([g,g_1],\dots,[g,g_n])\). If \(\text{Im }\Phi_n=[G,G]^n\), then \(G\) is said to have property \({\mathcal C}_n\). A simple algebraic group is said to have property \(\overline{\mathcal C}_n\) if the map \(\Phi_n\) is dominant, i.e., if \(G^n\) is the Zariski closure of \(\text{Im }\Phi_n\) in \(G^n\).
The main result in this paper is the following theorem: Let \(G\) be a simple algebraic group and let \(h=h(G)\) be the Coxeter number of the corresponding root system. Then \(G\) has the property \(\overline{\mathcal C}_n\) if and only if \(n\leq h+1\).
The authors prove a similar result for Lie algebras.

MSC:

20G15 Linear algebraic groups over arbitrary fields
20F12 Commutator calculus
17B05 Structure theory for Lie algebras and superalgebras
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alperin, R. C.; Dennis, R. K., \(K_2\) of quaternion algebras, J. Algebra, 56, 262-273 (1979) · Zbl 0397.18011
[2] Arad, Z.; Herzog, M., Products of Conjugacy Classes in Groups. Products of Conjugacy Classes in Groups, Lecture Notes in Mathematics, 1112 (1985), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0561.20004
[3] Bourbaki, N., Groupes et Algèbres de Lie IV, V, VI (1968), Hermann: Hermann Paris · Zbl 0186.33001
[4] Campbell, C. M., Groups ’93 Galway/St. Andrews. Groups ’93 Galway/St. Andrews, CUP, LMS, Lecture Note Series, 2 (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0839.00022
[5] Ellers, E. W.; Gordeev, N., On the conjecture of J. Thompson and O. Ore, Trans. Amer. Math. Soc., 350, 3657-3671 (1998) · Zbl 0910.20007
[6] Isaacs, I. M., Commutators and the commutator subgroup, Amer. Math. Monthly, 84, 720-722 (1977) · Zbl 0378.20029
[7] Kersten, I.; Rehmann, U., Generic splitting of reductive groups, Tôhoku Math. J., 46, 35-70 (1994) · Zbl 0805.20034
[8] Matsumoto, H., Sur les sous-groupes arithmétiques des groupes semi-simple déploy’es, Ann. Scient. Ec. Norm. Sup., 4, 1-62 (1969) · Zbl 0261.20025
[9] Miller, C., The second homology of a group; relations among commutators, Proc. Amer. Math. Soc., 3, 588-595 (1952) · Zbl 0047.25703
[10] Morita, J.; Rehmann, U., A Matsumoto-type theorem for Kac-Moody groups, Tôhoku Math. J., 42, 537-560 (1990) · Zbl 0701.19001
[11] Kursov, Commutators of the multiplicative group of a finite-dimensional central division algebra, Dokl. Akad. Nauk BSSR, 26, 101-103 (1982) · Zbl 0498.16017
[12] Knus, M. A.; Merkurev, A.; Rost, M.; Tignol, J.-P., The Book of Involutions. The Book of Involutions, Colloq. Pub., 44 (1998), American Mathematical Society: American Mathematical Society Providence
[13] Neubüser, J.; Pahlings, H.; Cleuvers, E., Each sporadic finasig has a class such that \(CC =G\), Abstracts Amer. Math. Soc., 34, 6 (1984)
[14] Ore, O., Some remarks on commutators, Proc. Amer. Math. Soc., 272, 307-314 (1951) · Zbl 0043.02402
[15] Rehmann, U., Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers, J. Reine Angew. Math., 301, 77-104 (1978) · Zbl 0377.20036
[16] Rehmann, U., Central Extensions of \(SL_2\) Over Division Rings and Some Metaplectic Theorems. Applications of Algebraic \(K\)-Theory to Algebraic Geometry and Number Theory. Central Extensions of \(SL_2\) Over Division Rings and Some Metaplectic Theorems. Applications of Algebraic \(K\)-Theory to Algebraic Geometry and Number Theory, Contemporary Mathematics, 55 (1986), American Mathematical Society: American Mathematical Society Providence, p. 561-607
[17] Rehmann, U.; Stuhler, U., On \(K_2\) of finite dimensional Division algebras over arithmetical fields, Inventiones Math., 50, 75-90 (1978) · Zbl 0378.12012
[18] Serre, J.-P., Cohomologie Galoisienne. Cohomologie Galoisienne, Lecture No8es in Mathematics, 5 (1965), Springer: Springer Berlin/Heidelberg/New York
[19] R. Steinberg, Lectures on Chevalley groups, notes prepared by J. Faulkner and R. Wilson, Yale University, 1967.; R. Steinberg, Lectures on Chevalley groups, notes prepared by J. Faulkner and R. Wilson, Yale University, 1967.
[20] Steinberg, R., Regular elements of semisimple algebraic groups, Publ. Math. IHES, 25, 281-312 (1965) · Zbl 0136.30002
[21] Thomson, R. C., Commutators in the special and general linear groups, Trans. Amer. Math. Soc., 101, 16-23 (1961)
[22] van der Waerden, B. L., Algebra (1967), Zweiter Teil, Springer-Verlag · Zbl 0192.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.