×

More pressure in the finite element discretization of the Stokes problem. (English) Zbl 0992.76051

Summary: For the Stokes problem in a two- or three-dimensional bounded domain, we propose a mixed finite element discretization which relies on a nonconforming approximation of velocity and on a more accurate approximation of pressure. We prove that the velocity and pressure discrete spaces are compatible, in the sense that they satisfy an inf-sup condition of Babuška and Brezzi type. Finally, we derive some error estimates.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML Link

References:

[1] K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming. Stanford University Press, Stanford (1958). Zbl0091.16002 · Zbl 0091.16002
[2] I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math.20 (1973) 179-192. Zbl0258.65108 · Zbl 0258.65108 · doi:10.1007/BF01436561
[3] C. Bergé, Théorie des graphes. Dunod, Paris (1970).
[4] J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal.20 (1983) 722-731. · Zbl 0521.76027 · doi:10.1137/0720048
[5] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO - Anal. Numér.8 R2 (1974) 129-151. · Zbl 0338.90047
[6] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351. · Zbl 0875.65086
[7] P. Clément, Développement et applications de méthodes numériques volumes finis pour la description d’écoulements océaniques. Thesis, Université Joseph Fourier, Grenoble (1996).
[8] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO - Anal. Numér.7 R3 (1973) 33-76. Zbl0302.65087 · Zbl 0302.65087
[9] P. Emonot, Méthodes de volumes éléments finis: application aux équations de Navier-Stokes et résultats de convergence. Thesis, Université Claude Bernard, Lyon (1992).
[10] M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO - Anal. Numér.11 R3 (1977) 341-354. · Zbl 0373.65055
[11] V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986). · Zbl 0585.65077
[12] F. Hecht, Construction d’une base d’un élément fini P1 non conforme à divergence nulle dans \Bbb R 3 . Thesis, Université Pierre et Marie Curie, Paris (1980).
[13] F. Hecht, Construction d’une base de fonctions P1 non conforme à divergence nulle dans \Bbb R 3 . RAIRO - Anal. Numér.15 (1981) 119-150. · Zbl 0471.76028
[14] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO - Anal. Numér.18 (1984) 175-182. Zbl0557.76037 · Zbl 0557.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.