×

Quantum cryptography based on Bell’s theorem. (English) Zbl 0990.94509

Summary: Practical application of the generalized Bell’s theorem in the so-called key distribution process in cryptography is reported. The proposed scheme is based on the Bohm’s version of the Einstein-Podolsky-Rosen gedanken experiment and Bell’s theorem is used to test for eavesdropping.

MSC:

94A60 Cryptography
81P99 Foundations, quantum information and its processing, quantum axioms, and philosophy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984. 175-179 · Zbl 1306.81030
[2] Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661-663 · Zbl 0990.94509
[3] Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distributionnetwork with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049-1052
[4] Xue P, Li C F, Guo G C. Conditional efficient multiuser quantum cryptography network. Phys Rev A, 2002, 65: 022317
[5] Acin A, Gisin N, Scarani V. Coherent-pulse implementations of quantum cryptography protocols resistant to particlenumber-splitting attacks. Phys Rev A, 2004, 69: 012309
[6] Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75-78
[7] Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315
[8] Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311
[9] Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321
[10] Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography. Opt Express, 2009, 17: 6540-6549
[11] Chen W, Han Z F, Zhang T, et al. Field experiment on a “star type” metropolitan quantum key distribution network. IEEE Photonics Technol Lett, 2009, 21: 575-577
[12] Chen T Y, Wang J A, Liang H, et al. Metropolitan all-pass and inter-city quantum communication network. Opt Express, 2010, 18: 27217-27225
[13] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317
[14] Han J J, Sun S H, Liang L M. A three-node QKD network based on a two-way QKD system. Chin Phys Lett, 2011, 28: 040303
[15] Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt Express, 2011, 19: 10387-10409
[16] Mink A, Frankel S, Perlner R. Quantum key distribution (QKD) and commodity security protocols: Introduction and integration. Int J Netw Secur, 2009, 1101-112
[17] Bennett C H, Brassard G, Crpeau C. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys Rev Lett, 1993, 70: 1895-1899 · Zbl 1051.81505
[18] Phoenix S, Barnett S, Townsend P, et al. Multi-user quantum cryptography on optical networks, Mod Optics, 1995 42: 1155-1163
[19] Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902
[20] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302
[21] Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149-2153
[22] Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum Communication. Front Phys China, 2007, 2: 251-272
[23] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317
[24] Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319
[25] Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15-20
[26] Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305
[27] Lu X, Ma Z, Feng D G. Quantum secure direct communication using quantum Calderbank-Shor-Steane error correcting codes. J Softw, 2006, 173: 509-515 · Zbl 1098.68587
[28] Liu W J, Chen H W, Li Z Q, et al. Efficient quantum secure direct communication with authentication. Chin Phys Lett, 2008, 25: 2354-2357
[29] Gao T, Yan F L, Wang Z X. A simultaneous quantum secure direct communication scheme between the central party and other M parties. Chin Phys Lett, 2005, 22: 2473-2476
[30] Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67-70
[31] Deng F G, Li X H, Li C Y, et al. Multiparty quanutm secret report. Chin Phys Lett, 2006, 23: 1676-1679
[32] Sheikhehi F, Hantehzadeh M, Naseri M. Secure quantum report with authentication based on GHZ states and entanglement swapping. J Theor Appl Phys, 2011, 4: 39-44
[33] Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188-5191
[34] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050-2056
[35] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441-444
[36] Lütkenhaus N. Security against individual attacks for realistic quantum key distribution. Phys Rev A, 2000, 61: 052304
[37] Han F. Entanglement dynamics and transfer in a double Jaynes-Cummings model. Chin Sci Bull, 2010, 55: 1758-1762
[38] Yan T, Yan F L. Quantum key distribution using four-level particles. Chin Sci Bull, 2011, 56: 24-28
[39] Li M, Fei S M, Li-Jost X Q. Bell inequality, separability and entanglement distillation. Chin Sci Bull, 2011, 56: 945-954
[40] Cabello A. Quantum key distribution in the Holevo limit. Phys Rev Lett,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.