×

On a semilinear Schrödinger equation with critical Sobolev exponent. (English) Zbl 0984.35150

Summary: We consider the semilinear Schrödinger equation \[ -\Delta u+V(x)u = K(x)|u|^{2^{*}-2}u+g(x,u), \quad u\in W^{1,2}(\mathbb{R}^{N}), \] where \(N\geq 4\), \(V,K,g\) are periodic in \(x_{j}\) for \(1\leq j\leq N\), \(g\) is of subcritical growth, and 0 is in a gap of the spectrum of \(-\Delta+V\). We show that under suitable hypotheses this equation has a solution \(u\neq 0\). In particular, such a solution exists if \(K\equiv 1\) and \(g\equiv 0\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B33 Critical exponents in context of PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stanley Alama and Yan Yan Li, On ”multibump” bound states for certain semilinear elliptic equations, Indiana Univ. Math. J. 41 (1992), no. 4, 983 – 1026. · Zbl 0796.35043 · doi:10.1512/iumj.1992.41.41052
[2] Wolfgang Arendt, Gaussian estimates and interpolation of the spectrum in \?^{\?}, Differential Integral Equations 7 (1994), no. 5-6, 1153 – 1168. · Zbl 0827.35081
[3] Thomas Bartsch and Yanheng Ding, On a nonlinear Schrödinger equation with periodic potential, Math. Ann. 313 (1999), no. 1, 15 – 37. · Zbl 0927.35103 · doi:10.1007/s002080050248
[4] Vieri Benci and Giovanna Cerami, Existence of positive solutions of the equation -\Delta \?+\?(\?)\?=\?^{(\?+2)/(\?-2)} in \?^{\?}, J. Funct. Anal. 88 (1990), no. 1, 90 – 117. · Zbl 0705.35042 · doi:10.1016/0022-1236(90)90120-A
[5] B. Buffoni, L. Jeanjean, and C. A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), no. 1, 179 – 186. · Zbl 0789.35052
[6] Jan Chabrowski and Jianfu Yang, On Schrödinger equation with periodic potential and critical Sobolev exponent, Topol. Methods Nonlinear Anal. 12 (1998), no. 2, 245 – 261. · Zbl 0931.35052
[7] José F. Escobar, Positive solutions for some semilinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math. 40 (1987), no. 5, 623 – 657. · Zbl 0635.35033 · doi:10.1002/cpa.3160400507
[8] Rainer Hempel and Jürgen Voigt, The spectrum of a Schrödinger operator in \?_{\?}(\?^{\?}) is \?-independent, Comm. Math. Phys. 104 (1986), no. 2, 243 – 250. · Zbl 0593.35033
[9] L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrödinger type, J. Differential Equations 112 (1994), no. 1, 53 – 80. · Zbl 0804.35033 · doi:10.1006/jdeq.1994.1095
[10] Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. · Zbl 0836.47009
[11] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Diff. Eq. 3 (1998), 441-472. CMP 2000:11 · Zbl 0947.35061
[12] Peter Kuchment, Floquet theory for partial differential equations, Operator Theory: Advances and Applications, vol. 60, Birkhäuser Verlag, Basel, 1993. · Zbl 0789.35002
[13] A. A. Pankov and K. Pflüger, On a semilinear Schrödinger equation with periodic potential, Nonlinear Anal. 33 (1998), no. 6, 593 – 609. · Zbl 0952.35047 · doi:10.1016/S0362-546X(97)00689-5
[14] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[15] C. A. Stuart, Bifurcation into spectral gaps, Bull. Belg. Math. Soc. Simon Stevin suppl. (1995), 59. · Zbl 0864.47037
[16] A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems, Preprint. · Zbl 0984.37072
[17] C. Troestler, Bifurcation into spectral gaps for a noncompat semilinear Schrödinger equation with nonconvex potential, Preprint.
[18] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations 21 (1996), no. 9-10, 1431 – 1449. · Zbl 0864.35036 · doi:10.1080/03605309608821233
[19] Michel Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.