×

The likelihood ratio test for the number of components in a mixture with Markov regime. (English) Zbl 0982.62016

Summary: We study the LRT statistic for testing a single population i.i.d. model against a mixture of two populations with Markov regime. We prove that the LRT statistic converges to infinity in probability as the number of observations tends to infinity. This is a consequence of a convergence result of the LRT statistic for a subproblem where the parameters are restricted to a subset of the whole parameter set.

MSC:

62F05 Asymptotic properties of parametric tests
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62M02 Markov processes: hypothesis testing
62M99 Inference from stochastic processes
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] L.D. Atwood, A.F. Wilson, J.E. Bailey-Wilson, J.N. Carruth and R.C. Elston, On the distribution of the likelihood ratio test statistic for a mixture of two normal distributions. Comm. Statist. Simulation Comput. 25 ( 1996) 733-740. Zbl0937.62549 MR1410141 · Zbl 0937.62549 · doi:10.1080/03610919608813339
[2] L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37 ( 1966) 1554-1563. Zbl0144.40902 MR202264 · Zbl 0144.40902 · doi:10.1214/aoms/1177699147
[3] P.J. Bickel and Y. Ritov, Inference in hidden Markov models I: Local asymptotic normality in the stationary case. Bernoulli 2 ( 1996) 199-228. Zbl1066.62535 MR1416863 · Zbl 1066.62535 · doi:10.2307/3318520
[4] P.J. Bickel, Y. Ritov and T. Ryden, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Annals of Stat. 26 ( 1998) 614-1635. Zbl0932.62097 MR1647705 · Zbl 0932.62097 · doi:10.1214/aos/1024691255
[5] R.-J. Chuang and N.R. Mendell, The approximate null distribution of the likelihood ratio test for a mixture of two bivariate normal distributions with equal covariance. Comm. Statist. Simulation Comput. 26 ( 1997) 631-648. Zbl0900.62289 MR1466054 · Zbl 0900.62289 · doi:10.1080/03610919708813402
[6] G.A. Churchill, Stochastic models for heterogeneous DNA sequences. Bull. Math. Biology 51 ( 1989) 79-94. Zbl0662.92012 MR978904 · Zbl 0662.92012 · doi:10.1007/BF02458837
[7] G. Ciuperca, Sur le test de maximum de vraisemblance pour le mélange de populations. Note aux C.R.A.S., 328, Série I, 4 ( 1999) 351-358. Zbl1008.62021 MR1675952 · Zbl 1008.62021 · doi:10.1016/S0764-4442(99)80224-9
[8] D. Dacunha-Castelle and M. Duflo, Probabilits et statistiques, Tome 2. Masson ( 1993). Zbl0535.62004 MR732786 · Zbl 0535.62004
[9] D. Dacunha-Castelle and E. Gassiat, Estimation of the number of components in a mixture. Bernoulli 3 ( 1997a) 279-299. Zbl0889.62012 MR1468306 · Zbl 0889.62012 · doi:10.2307/3318593
[10] D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models. ESAIM Probab. Statist. 1 ( 1997b). Zbl1007.62507 MR1468112 · Zbl 1007.62507 · doi:10.1051/ps:1997111
[11] D. Dacunha-Castelle and E. Gassiat, Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes. Ann. Statist. 27 ( 1999) 1178-1209. Zbl0957.62073 MR1740115 · Zbl 0957.62073 · doi:10.1214/aos/1017938921
[12] A.P. Dempster, N.M. Laird and D.B. Rubin, Large Maximum-likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 ( 1977) 1-38. Zbl0364.62022 MR501537 · Zbl 0364.62022
[13] R. Douc and C. Matias, Asymptotics of the Maximum Likelihood Estimator for general Hidden Markov Models ( 1999) (submitted). Zbl0987.62018 · Zbl 0987.62018 · doi:10.2307/3318493
[14] M. Duflo, Algorithmes stochastiques. Springer ( 1996). Zbl0882.60001 MR1612815 · Zbl 0882.60001
[15] Z.D. Feng and C.E. McCulloch, Using bootstrap Likelihood Ratio in Finite Mixture Models. J. Roy. Statist. Soc. Ser. B 58 ( 1996) 609-617. Zbl0906.62021 · Zbl 0906.62021
[16] L. Finesso, Consistent Estimation of the Order for Markov and Hidden Markov Chains. Ph.D. Thesis, University of Maryland ( 1990).
[17] D.R. Fredkin and J.A. Rice, Maximum likelihood estimation and identification directly from single-channel recordings. Proc. Roy. Soc. London Ser. B 249 ( 1992) 125-132.
[18] P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application. Academic Press ( 1980). Zbl0462.60045 MR624435 · Zbl 0462.60045
[19] J.A. Hartigan, A failure of likelihood ratio asymptotics for normal mixtures, in Proc. Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, edited by L.M. Le Cam and R.A. Olshen ( 1985) 807-810. MR822066 · Zbl 1373.62070
[20] J. Henna, On estimating the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math. 37 ( 1985) 235-240. Zbl0577.62031 MR799237 · Zbl 0577.62031 · doi:10.1007/BF02481094
[21] J.L. Jensen and N.V. Petersen, Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27 ( 1999) 514-535. Zbl0952.62023 MR1714719 · Zbl 0952.62023 · doi:10.1214/aos/1018031205
[22] C. Keribin, Tests de modèles par maximum de vraisemblance, Thèse de l’Université d’Evry-Val d’Essonne ( 1999).
[23] C. Keribin, Consistent estimation of the Order of Mixture Models ( 1997) (submitted). Zbl1081.62516 · Zbl 1081.62516
[24] B.G. Leroux, Maximum-likelihood estimation for hidden Markov models. Stochastic Process Appl. 40 ( 1992) 127-143. Zbl0738.62081 MR1145463 · Zbl 0738.62081 · doi:10.1016/0304-4149(92)90141-C
[25] B.G. Leroux and M.L. Puterman, Maximum Penalized Likelihood Estimation for Independent and Markov-Dependent Mixture Models. Biometrics 48 ( 1992) 545-558.
[26] B.G. Lindsay, Mixture models: Theory, Geometry and Applications ( 1995). Zbl1163.62326 · Zbl 1163.62326
[27] I.L. Mac Donald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time Series. Chapman and Hall ( 1997). Zbl0868.60036 MR1692202 · Zbl 0868.60036
[28] G.J. McLachlan, On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture. Appl. Statist. 36 ( 1987) 318-324.
[29] L. Mevel, Statistique asymptotique pour les modèles de Markov cachés. Thèse de l’Université de Rennes I ( 1997).
[30] L. Mevel and F. LeGland, Exponential forgetting and Geometrie Ergodicity in Hidden Markov models. Math. Control Signals Systems (to appear). Zbl0941.93053 MR1742140 · Zbl 0941.93053 · doi:10.1007/PL00009861
[31] S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Springer-Verlag ( 1993). Zbl0925.60001 MR1287609 · Zbl 0925.60001
[32] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 ( 1989) 257-284.
[33] T. Ryden, Estimating the order of hidden Markov models. Statistics 26 ( 1995) 345-354. Zbl0836.62057 MR1365683 · Zbl 0836.62057 · doi:10.1080/02331889508802501
[34] P. Vandekerkhove, Identification de l’ordre des processus ARMA stables. Contribution à l’étude statistique des chaînes de Markov cachées. Thèse de l’Université de Montpellier II ( 1997).
[35] A. Van der Vaart, Asymptotic Statistics. Cambridge Ed. ( 1999). Zbl0910.62001 MR1652247 · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.