×

Mappings with bounded distortion and with finite distortion on Carnot groups. (English. Russian original) Zbl 0973.30021

Sib. Math. J. 40, No. 4, 644-677 (1999); translation from Sib. Mat. Zh. 40, No. 4, 764-804 (1999).
The goal of the article is to develop a theory of mappings with bounded distortion (quasiregular mappings) on a Carnot group equipped with a Carnot-Carathéodory metric, starting from the weakest analytical assumption. A Carnot group is said to be a connected simply connected nilpotent Lie group \(\mathbb G\) whose Lie algebra is decomposed into the direct sum \(V_1\oplus\dots\oplus V_m\) of vector spaces such that \(\dim V_1\geq 2\), \([V_1,V_k]=V_{k+1}\) for \(1\leq k\leq m-1\) and \([V_1,V_m]=\{0\}\); the Carnot-Carathéodory distance \(d(x,y)\) between \(x,y\in\mathbb G\) is defined as the infimum of the lengths of the curves tangent to \(V_1\) a.e. [see P. Pansu, Ann. Math., II. Ser. 129, No. 1, 1-60 (1989; Zbl 0678.53042)].
Definition 1. A continuous mapping \(\varphi: \Omega \to \mathbb G\) is a mapping with bounded distortion on a domain \(\Omega\) of a Carnot group if \(\varphi\) belongs to \(HW_{\nu,\text{loc}}^1(\Omega)\), \(\nu\) is the Hausdorff dimension of \(\mathbb G\), and, for a.e. \(x\in\Omega\), the formal horizontal differential \(|D_H \varphi(x)|\) determined by the matrix \(X_k\varphi\) (\(X_k\), \(1\leq\dim V_1\), is the left-invariant basis of \(V_1\)) satisfies the inequality \[ |D_H \varphi(x)|^{\nu}\leq KJ(x,\varphi). \]
Foundation of the theory is based on a broader class of mappings with finite distortion.
Definition 2. A mapping \(\varphi: \Omega \to \mathbb G\) is a mapping with finite distortion on a domain \(\Omega\) of a Carnot group if \(\varphi\) belongs to \(HW_{\nu,\text{loc}}^1(\Omega)\), its Jacobian \(J(x,\varphi)\) is nonnegative, and \(D_H \varphi(x)\neq 0\) implies \(J(x,\varphi)\geq 0\) for a.e. \(x\in\Omega\).
It is proven that mappings with finite distortion are continuous, quasimonotone, \(P\)-differentiable, and satisfy the \(N\)-Luzin property.
This makes it possible to establish a connection between solutions to quasilinear subelliptic equations and mappings with bounded distortion in the case when the \(\nu\)-sub-Laplacian \(-\text{div}_*(|\nabla_{\mathcal L}u(x)|^{\nu-2}\nabla_{\mathcal L}u(x))=0\) on a Carnot group has a singular solution of class \(C^2\).
For mappings with bounded distortion on Carnot groups, it is established that they are open and discrete, enjoy the \(\mathcal N^{-1}\) property, and have nondegenerate Jacobian. Normality of the class of mappings under study is proven. The author also proves a semicontinuity theorem for the distortion coefficient under locally uniform convergence of a sequence of mappings with bounded distortion, and a Liouville theorem for arbitrary Heisenberg groups under minimal smoothness assumptions.
Note that the approach to constructing a theory and the majority of the proofs in the article are novel for a Euclidean space as well.
The method is based on the change-of-variable formula for the Lebesgue integral for \(HW^1_{\nu,\text{loc}}\) classes and on other results obtained by the author in [S. K. Vodop’yanov, A. D. Ukhlov, Sib. Math. J. 37, No. 1, 62-78 (1996; Zbl 0870.43005)], [S. K. Vodop’yanov, Sib. Math. J. 37, No. 6, 1113-1136 (1996; Zbl 0876.30020)], and [S. K. Vodop’yanov, Sib. Math. J. 41, No. 1, 19-39 (2000)].
See related topics in [J. Heinonen, I. Holopainen, J. Geom. Anal. 7, No. 1, 109-148 (1997; Zbl 0905.30018)]where, in the very beginning, the authors stipulate a too strong regularity condition in the definition of a mapping with bounded distortion.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
43A80 Analysis on other specific Lie groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton (1982) (Math. Notes,28). · Zbl 0508.42025
[2] P. Pansu, ”Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un,” Ann. of Math. (2),129, No. 1, 1–60 (1989). · Zbl 0678.53042 · doi:10.2307/1971484
[3] L. Hörmander, ”Hypoelliptic second order differential equations,” Acta Math.,119, 141–171 (1967). · Zbl 0156.10701 · doi:10.1007/BF02392081
[4] S. K. Vodop’yanov and A. D. Ukhlov, ”Approximately differentiable transformations and change of variables on nilpotent groups,” Sibirsk. Mat. Zh.,37, No. 1, 70–89 (1996). · Zbl 0870.43005
[5] S. K. Vodop’yanov, ”Monotone functions and quasiconformal mappings on Carnot groups,” Sibirsk. Mat. Zh.,37, No. 6, 1269–1295 (1996).
[6] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982). · Zbl 0487.30011
[7] G. D. Mostow, ”Quasi-conformal mappings inn-space and the rigidity of hyperbolic space forms,” Inst. Hautes Études Sci. Publ. Math., No. 34, 53–104 (1968). · Zbl 0189.09402 · doi:10.1007/BF02684590
[8] A. Koranyi and H. M. Reimann, ”Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math.,111, 1–87 (1995). · Zbl 0876.30019 · doi:10.1006/aima.1995.1017
[9] J. Heinonen, ”Calculus on Carnot groups,” in: Fall School in Analysis (Javäskylä, 1994), University of Javäskylä, Javäskylä, 1994, pp. 1–32.
[10] S. K. Vodop’yanov, ”Topological properties of mappings in Sobolev classes with summable Jacobian,” Dokl. Akad. Nauk,363, No. 4, 443–446 (1998). · Zbl 0961.46019
[11] S. K. Vodop’yanov, ”Topological properties of mappings in Sobolev classes with summable Jacobian,” Sibirsk. Mat. Zh. (to appear).
[12] S. K. Vodop’yanov, ”On differentiability of mappings in Sobolev classes on a Carnot group,” Sibirsk. Mat. Zh. (to appear).
[13] N. S. Dairbekov, ”The morphism property for mappings with bounded distortion on the Heisenberg group,” Sibirsk. Mat. Zh.,40, No. 4, 811–823 (1999). · Zbl 0949.30017
[14] N. S. Dairbekov, ”On mappings with bounded distortion on the Heisenberg group,” Sibirsk. Mat. Zh. (to appear). · Zbl 1039.22002
[15] S. K. Vodop’yanov and V. M. Chernikov, ”Sobolev spaces and hypoelliptic equations,” in: Trudy Inst. Math. Vol. 29 [in Russian], Inst. Math. (Novosibirsk), Novosibirsk, 1995, pp. 7–62. (English transl.: ”Sobolev spaces and hypoelliptic equations,” Siberian Adv. Math., I:6, No. 3, 27–67 (1996); II:6, No. 4, 64–96 (1996).
[16] J. Heinonen and I. Holopainen, ”Quasiregular maps on Carnot groups,” J. Geom. Anal.,7, No. 1, 109–148 (1997). · Zbl 0905.30018 · doi:10.1007/BF02921707
[17] S. K. Vodop’yanov and I. G. Markina, ”Exceptional sets for solutions to subelliptic equations,” Sibirsk. Mat. Zh.,36, No. 4, 805–818 (1995).
[18] C. J. Titus and G. S. Young, ”The extension of interiority with some applications,” Trans. Amer. Math. Soc.,103, 329–340 (1962). · Zbl 0113.38001 · doi:10.1090/S0002-9947-1962-0137103-6
[19] Yu. G. Reshetnyak, ”Space mappings with bounded distortion,” Sibirsk. Mat. Zh.,8, No. 3, 652–686 (1967).
[20] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford etc. (1993). · Zbl 0780.31001
[21] G. B. Folland, ”Subelliptic estimates and function spaces on nilpotent Lie groups,” Ark. Math.,13, 161–207 (1975). · Zbl 0312.35026 · doi:10.1007/BF02386204
[22] S. K. Vodop’yanov and N. A. Kudryavtseva, ”Normal families of mappings on Carnot groups,” Sibirsk. Mat. Zh.,37, No. 2, 273–286 (1996).
[23] S. Vodop’yanov, ”Analysis on Carnot groups and quasiconformal mappings,” in: Abstracts: Ann Arbor Analysis Workshop (Ann Arbor, August, 1995), University of Michigan, Ann Arbor, 1995. pp. 5–6.
[24] S. K. Vodop’yanov and I. G. Markina, ”Classification of sub-Riemannian manifolds,” Sibirsk. Mat. Zh.,39, No. 6, 1271–1288 (1998).
[25] S. K. Vodop’yanov and I. G. Markina, ”Fundamentals of nonlinear potential theory for hypoelliptic equations,” in: Trudy Inst. Math. Vol. 31 [in Russian], Inst. Math. (Novosibirsk), Novosibirsk, 1996, pp. 100–160. (English transl.: ”Foundations of non-linear potential theory of subelliptic equations,” Siberian Adv. Math., I:7, No. 1, 1–31 (1997); II:7, No. 2, 1–46 (1997).)
[26] L. Capogna, ”Regularity of quasi-linear equations in the Heisenberg group,” Comm. Pure Appl. Math.,50, 867–889 (1997). · Zbl 0886.22006 · doi:10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
[27] Yu. G. Reshetnyak, Stability Theorems in Geometry and Analysis [in Russian], Sobolev Institute Press, Novosibirsk (1996). · Zbl 0848.30013
[28] P. Hajłasz and J. Malý, ”Approximation of nonlinear expressions involving gradient in Sobolev spaces” (to appear). · Zbl 1029.46028
[29] S. K. Vodop’yanov, Function-Theoretic Approach to Some Problems of the Theory of Space Quasiconformal Mappings [in Russian], Avtoref. Dis. Kand. Fiz.-Mat. Nauk, Novosibirsk (1975).
[30] S. K. Vodop’yanov and V. M. Gol’dshtenîn ”Quasiconformal mappings and spaces of functions with first generalized derivatives,” Sibirsk. Mat. Zh.,17, No. 3, 515–531 (1976).
[31] N. S. Dairbekov, ”Mappings with bounded distortion on the Heisenberg group,” Sibirsk. Mat. Zh. (to appear). · Zbl 1039.22002
[32] N. S. Dairbekov, ”A limit theorem for mappings with bounded distortion on the Heisenberg group and a local homeomorphism theorem,” Sibirsk. Mat. Zh. (to appear). · Zbl 1074.30508
[33] S. K. Vodop’yanov, ”An isoperimetric inequality on Carnot groups and its applications,” Sibirsk. Mat. Zh. (to appear).
[34] S. K. Vodop’yanov and I. G. Markina, ”Local estimates for mappings with bounded distortion on Carnot groups,” Sibirsk. Mat. Zh. (to appear).
[35] B. Bojarski and T. Iwaniec, ”Analytical foundations of the theory of quasiconformal mappings in \(\mathbb{R}\) n ,” Ann. Acad. Sci. Fenn. Ser. AI Math.,8, 257–324 (1983). · Zbl 0548.30016
[36] Yu. G. Reshetnyak, ”Sobolev-type classes of functions with values in a metric space,” Sibirsk. Mat. Zh.,38, No. 3, 657–675 (1997). · Zbl 0944.46024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.