×

The negative Pell equation and Pythagorean triples. (English) Zbl 0971.11013

Let \(d\) be a positive integer and \((A,B,C)\) be a primitive Pythagorean triple. In this paper, the authors prove that the Pell equation \(x^2-dy^2=-1\) is solvable in integers \(x\) and \(y\) if and only if there exist positive integers \(a,b\) and an \((A,B,C)\) such that \(d=a^2+b^2\) and \(|aA-bB|=1\). In this case, \(x=|aB+bA|\) and \(y=C\). Similarly, the authors also prove that the number \(\epsilon=(x+y\sqrt d)/2\), where \(x,y\) are relatively prime integers and \(x\) is odd, is the fundamental unit of \(\mathbb{Q}(\sqrt d)\) with the negative norm if and only if there exist positive integers \(a,b\) and an \((A,B,C)\) such that \(d=a^2+b^2\) and \(|aA-bB|=2\), and \((a,b)=(A,B)=1\). The method is elementary.

MSC:

11D09 Quadratic and bilinear Diophantine equations
11R27 Units and factorization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bosma, W., and Stevenhagen, P.: Density computations for real quadratic units. Math. Comp., 65 , 1327-1337 (1996). · Zbl 0859.11064 · doi:10.1090/S0025-5718-96-00725-9
[2] Cremona, J. E., and Odoni, R. W. K.: Some density results for netative Pell equations; an application of graph theory. J. London Math. Soc., 39 , 16-28 (1989). · Zbl 0678.10015 · doi:10.1112/jlms/s2-39.1.16
[3] Dickson, L. E.: Introduction to the Theory of Numbers. Dover, New York (1957). · Zbl 0084.26901
[4] Lagarias, J. C.: On the computational complexity of determining the solvability or unsolvability of the equation \(X^2 - DY^2 = -1\). Trans. Amer. Math. Soc., 260 , 485-508 (1980). · Zbl 0446.10014 · doi:10.2307/1998017
[5] LeVeque, W. J.: Fundamentals of Number Theory. Addison-Wesley, Massachusetts-London-Amsterdam (1977). · Zbl 0368.10001
[6] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Number. Polish Scientific Publishers, Warszawa (1990). · Zbl 0717.11045
[7] Newman, M.: A note on an equation related to the Pell equation. Amer. Math. Monthly, 84 , 365-366 (1990). · Zbl 0386.10010 · doi:10.2307/2319968
[8] Rédei, L.: Die 2-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie der Pellschen Gleichungen. Acta Math. Acad. Sci. Hunger., 4 , 31-87 (1953). · Zbl 0051.27101 · doi:10.1007/BF02020351
[9] Scholz, A.: Über die Lösbarkeit der Gleichung \(t^2 - Du^2 = -4\). Math. Z., 39 , 93-111 (1934). · JFM 60.0126.03
[10] Sierpiński, W.: Elementary Theory of Numbers. Polish Scientific Publishers, Warszawa (1987). · Zbl 0689.10002
[11] Stevenhagen, P.: The number of real quadratic fields having units of negative norms. Experiment. Math., 2 , 121-130 (1993). · Zbl 0792.11041 · doi:10.1080/10586458.1993.10504272
[12] Stevenhagen, P.: A density conjecture for the negative Pell equation. Comput. Algebra and Number Theory, Sydney, 1992. Math. Appl., 325 , Kluwer, Dortrecht, pp. 187-200 (1995). · Zbl 0838.11066 · doi:10.1007/978-94-017-1108-1_13
[13] Tano, F.: Sur quelques théorèmes de Dirichlet. J. Reine Angew. Math., 105 , 160-169 (1889). · JFM 21.0180.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.