×

On new generalizations of Hilbert’s inequality. (English) Zbl 0970.26009

Let \(\lambda>0\) and let \(f_i : (0,\infty)\rightarrow\mathbb R\) \((i=1,2)\) be functions such that \(0<\int^{\infty}_0 t^{1-\lambda} f_i^2 (t) dt<\infty\). Then \[ \int^{\infty}_0 \int^{\infty}_0 \frac{f_1(x)f_2(y)}{(Ax+By)^{\lambda}} dx dy < (AB)^{-\lambda/2} B\Big(\frac{\lambda}{2}, \frac{\lambda}{2}\Big)\prod^2_{i=1} \Big(\int^{\infty}_0 t^{1-\lambda} f^2_i(t) dt\Big)^{1/2} \tag{1} \] and \[ \int^{\infty}_0 y^{\lambda-1} \Big[\int^{\infty}_0 \frac{f_1(x)}{(Ax+By)^{\lambda}} dx\Big]^2 dy < (AB)^{-\lambda} \Big[B\Big(\frac{\lambda}{2}, \frac{\lambda}{2}\Big)\Big]^2 \int^{\infty}_0 t^{1-\lambda} f^2(t) dt, \tag{2} \] where \(B(\cdot,\cdot)\) is the \(\beta\)-function. Moreover, the inequalities (1) and (2) are equivalent and the constants appearing on their right hand sides are the best possible. This is the main result of the paper. The author also presents its discrete analogue.

MSC:

26D15 Inequalities for sums, series and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1952), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0047.05302
[2] Ke, Hu, On Hilbert’s inequality, Chinese Ann. of Math., 13B, 35-39 (1992) · Zbl 0757.26020
[3] Gao, M.; Li, Tan; Debnath, L., Some improvements on Hilbert’s integral inequality, J. Math. Anal. Appl., 229, 682-689 (1999) · Zbl 0920.26018
[4] Gao, M., A note on Hilbert double series theorem, Hunan Ann. Math., 12, 142-147 (1992) · Zbl 0829.26015
[5] Yang, B., On Hilbert’s integral inequality, J. Math. Anal. Appl., 220, 778-785 (1998) · Zbl 0911.26011
[6] Wang, Z.; Guo, D., An Introduction to Special Functions (1979), Science Press: Science Press Beijing
[7] Kuang, J., Applied Inequalities (1992), Hunan Education Press: Hunan Education Press Changsha
[8] Yang, B.; Debnath, L., On a new generalization of Hardy-Hilbert’s inequality and its applications, J. Math. Anal. Appl., 233, 484-497 (1999) · Zbl 0935.26009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.