×

The quasistationary phase field equations with Neumann boundary conditions. (English) Zbl 0963.35188

The paper considers the quasistationary phase field equations \[ \partial_t(u+ \varphi)- \Delta u= f\quad\text{in }\Omega\times ]0,T[, \]
\[ \partial_\nu u= 0\quad\text{on }\partial\Omega\times ]0, T[, \]
\[ (u+\varphi)(0)= w_0, \] and \[ -2\varepsilon\Delta\varphi+ {1\over\varepsilon} W'(\varphi)= u\quad\text{in }\Omega\times ]0, T[, \]
\[ \partial_\nu\varphi= 0\quad\text{on }\partial\Omega\times ]0, T[ \] and shows that with a double-well potential \(W(t)= (t^2- 1)^2\) and a space dimension \(n\leq 3\) the system has a solution. Moreover, it is shown that as \(\varepsilon\to 0\) the solutions converge to the solution of the Stefan problem with the Gibbs-Thomson law. The crucial point here is the compactness of \(\varphi\) which is proved not by a compact embedding argument, but by introducing a time discrete approximation.

MSC:

35Q72 Other PDE from mechanics (MSC2000)
35R35 Free boundary problems for PDEs
35A35 Theoretical approximation in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Caginalp, G., An analysis of a phase-field model of a free boundary, Arch. Rational Mech. Anal., 92, 205-245 (1986) · Zbl 0608.35080
[2] Canarius, T.; Schätzle, R., Finiteness and positivity results for global minimizers of a semilinear elliptic problem, J. Differential Equations, 148, 212-229 (1998) · Zbl 0916.35034
[3] T. Canarius, and, R. Schätzle, Multiple solutions for a semilinear elliptic problem, 1999, Nonlinear Analysis TMA, to appear.; T. Canarius, and, R. Schätzle, Multiple solutions for a semilinear elliptic problem, 1999, Nonlinear Analysis TMA, to appear.
[4] Dancer, E. N., Breaking of symmetries for forced equations, Math. Ann., 262, 473-486 (1983) · Zbl 0491.58012
[5] G. J. Fix, Phase field methods for free boundary problems, Free boundary problems and applications, in Proceedings of Interdisciplinary Symposium on Free Boundary Problems: Theory and Applications, held in Montecatini, Italy, from June 17-26, 1981 (A. Fasano and M. Primicerio, Eds.), Research Notes in Mathematics, Vols. 78, 79, pp. 580-589.; G. J. Fix, Phase field methods for free boundary problems, Free boundary problems and applications, in Proceedings of Interdisciplinary Symposium on Free Boundary Problems: Theory and Applications, held in Montecatini, Italy, from June 17-26, 1981 (A. Fasano and M. Primicerio, Eds.), Research Notes in Mathematics, Vols. 78, 79, pp. 580-589.
[6] Friedman, A., The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133, 51-87 (1968) · Zbl 0162.41903
[7] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York/Tokyo · Zbl 0691.35001
[8] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Birkhäuser: Birkhäuser Basel/Boston/Stuttgart · Zbl 0545.49018
[9] Gurtin, M.; Matano, H., On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math., XLVI, 301-317 (1988) · Zbl 0665.76120
[10] Hoffmann, K.-H.; Starovoitov, V. N., The Stefan problem with surface tension and convection in Stokes fluid, Adv. Math. Sci. Appl., 8, 173-183 (1998) · Zbl 0958.35153
[11] Hoffmann, K.-H.; Starovoitov, V. N., Phase transitions of liquid-liquid type with convection, Adv. Math. Sci. Appl., 8, 185-198 (1998) · Zbl 0958.35152
[12] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435-479 (1977)
[13] Luckhaus, S., The Stefan Problem with Gibbs Thomson Law, Sezione di Analisi Matematica e Probabilitita (1991), Universita di Pisa
[14] Luckhaus, S.; Modica, L., The Gibbs Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107, 71-83 (1989) · Zbl 0681.49012
[15] Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98, 123-142 (1987) · Zbl 0616.76004
[16] Modica, L.; Mortola, S., Un esempio di \(Γ\)-convergenza, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 14, 285-299 (1977) · Zbl 0356.49008
[17] Penrose, O.; Fife, P. C., Thermodynamically consistent models of phase-field type for kinetics of phase transitions, Physica D, 43, 44-60 (1990) · Zbl 0709.76001
[18] Plotnikov, P. I.; Starovoitov, V. N., Stefan problem with surface tension as a limit of the phase field model, Differential Equations, 29, 395-404 (1993) · Zbl 0802.35165
[19] Reshetnyak, Y. G., Weak convergence of completley additive vector functions on a set, Siberian Math. J., 9, 1039-1045 (1968) · Zbl 0176.44402
[20] Schätzle, R., A counterexample for an approximation of the Gibbs-Thomson law, Adv. Math. Sci. Appl., 7, 25-36 (1997) · Zbl 0883.35043
[21] Simon, J., Compact sets in the space \(L^p}(0, T; B)\), Ann. Mat. Pura Appl. (4), 146, 65-96 (1987) · Zbl 0629.46031
[22] Stoth, B., A sharp interface limit of the phase field equations: One-dimensional and axisymmetric, Eur. J. Appl. Math., 7, 603-633 (1996) · Zbl 0876.35133
[23] Visintin, A., Surface tension effects in phase transition, (Ball, J., Material Instabilities in Continuums Mechanics (1988), Clarendon Press: Clarendon Press Oxford), 507-537 · Zbl 0648.73050
[24] Woodruff, P. D., The Liquid-Solid Interface (1973), Cambridge University Press: Cambridge University Press London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.