×

\(N=1\) supersymmetric \(\text{SU}(4)\times\text{SU}(2)_L\times\text{SU}(2)_R\) effective theory from the weakly coupled heterotic superstring. (English) Zbl 0958.81190

Summary: In the context of the free-fermionic formulation of the heterotic superstring, we construct a three-generation \(N=1\) supersymmetric SU\((4)\times\text{SU}(2)_L\times\text{SU}(2)_R\) model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in \((4,2_R)+(\bar 4,2_R)\) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of \(F\)- and \(D\)-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets imposes further restrictions to the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormalizable fermion mass terms up to fifth order shows that in certain string vacua the hierarchy of the fermion families is naturally obtained in the model as the second and third generation fermions earn their mass from fourth- and fifth-order terms. Along certain flat directions it is shown that the ratio of the SU(4) breaking scale and the reduced Planck mass is equal to the up quark ratio \(m_c/m_t\) at the string scale. An additional prediction of the model, is the existence of a U(1) symmetry carried by the fields of the hidden sector, ensuring thus the stability of the lightest hidden state. It is proposed that the hidden states may account for the invisible matter of the universe.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81V22 Unified quantum theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Kawai, H.; Lewellen, D. C.; Schwarz, J. A.; Tye, S.-H. H., The spin structure construction of string models and multiloop modular invariance, Nucl. Phys. B, 299, 431 (1988)
[2] Font, A.; Ibanez, L.; Nilles, H. P.; Quevedo, F., Yukawa couplings in degenerate orbifolds: towards a realistic SU(3) × SU(2) × \(U(1)\) superstring, Phys. Lett. B, 210, 101 (1988)
[3] Faraggi, A.; Nanopoulos, D. V.; Yuan, K., A standard like model in the 4-d fermionic formulation, Nucl. Phys. B, 335, 347 (1990)
[4] Antoniadis, I.; Leontaris, G. K., A supersymmetric SU(4) × \(O(4)\) model, Phys. Lett. B, 216, 333 (1989)
[5] Antoniadis, I.; Leontaris, G. K.; Rizos, J., A three generation SU(4) × \(O(4)\) string model, Phys. Lett. B, 245, 161 (1990)
[6] Kakushadze, Z.; Shiu, G.; Henry Tye, S. H., Asymmetric non-Abelian orbifolds and model building, Phys. Rev. D, 54, 7545 (1996)
[7] Kiritsis, E.; Kounnas, C.; Petropoulos, P. M.; Rizos, J., String threshold corrections in models with spontaneously broken supersymmetry, Nucl. Phys. B, 540, 87 (1999), [hep-th/9807067] · Zbl 0942.81052
[8] Pati, J.; Salam, A., Lepton number as a fourth colour, Phys. Rev. D, 10, 275 (1974)
[9] Schellekens, A., Electric charge quantization in string theory, Phys. Lett. B, 237, 363 (1990)
[10] Gomez, M.; Rizos, J.; Tamvakis, K., Suppressing \(D = 5\) operators in general SU(5) models, Phys. Rev. D, 59, 015015 (1999)
[11] Shafi, Q.; Tavartkiladze, Z., Large neutrino mixings and other issues in supersymmetric \(SU (4)_C \) × \( SU (2)_L \) × \( SU (2)_R \), Nucl. Phys. B, 548, 3 (1999), [hep-ph/9811282]
[12] K.S. Babu, J.C. Pati and F. Wilczek, Fermion masses, neutrino oscillations, and proton decay in the light of SuperKamiokande, hep-ph/9812538.; K.S. Babu, J.C. Pati and F. Wilczek, Fermion masses, neutrino oscillations, and proton decay in the light of SuperKamiokande, hep-ph/9812538.
[13] Antoniadis, I.; Leontaris, G. K.; Tracas, N. D., Grand unified string models and low energy couplings, Phys. Lett. B, 279, 58 (1992)
[14] King, S., SU(4) × \( SU (2)_L \) × \( SU (2)_R\) as a surrogate GUT, Phys. Lett. B, 325, 129 (1994)
[15] Leontaris, G. K.; Rizos, J.; Tamvakis, K., Phenomenological constraints imposed by the hidden sector in the flipped SU(5) × \(U(1)\)-model, Phys. Lett. B, 243, 220 (1990)
[16] Rizos, J.; Tamvakis, K., Some selection rules for non-renormalizable Yukawa couplings in 4-d fermionic superstring models, Phys. Lett. B, 262, 227 (1991)
[17] Kalara, S.; Lopez, J. L.; Nanopoulos, D. V., Calculable non-renormalizable terms in string theory: A guide for the practitioner, Nucl. Phys. B, 353, 650 (1991)
[18] Fayet, P.; Iliopoulos, J., Spontaneously broken supergauge symmetries and Goldstone spinors, Phys. Lett. B, 51, 461 (1974)
[19] Atick, J.; Dixon, L.; Sen, A., String calculation of Fayet-Iliopoulos D-terms in arbitrary supersymmetric compactifications, Nucl. Phys. B, 292, 109 (1987)
[20] Rizos, J.; Tamvakis, K., Retracing the phenomenology of the flipped SU(5) × \(U(1)\) model, Phys. Lett. B, 251, 369 (1990)
[21] Antoniadis, I.; Rizos, J.; Tamvakis, K., Gauge symmetry breaking in the hidden sector of the flipped SU(5) × \(U(1)\)-model, Phys. Lett. B, 278, 257 (1992)
[22] Cleaver, G.; Cvetic, M.; Espinoza, J. R.; Everett, L.; Langacker, P., Classification of lat directions in perturbative heterotic superstring vacua with anomalous \(U(1)\), Nucl. Phys. B, 525, 3 (1998) · Zbl 1031.81598
[23] G. Cleaver and M. Cvetic, J.R. Espinoza, L. Everett, P. Langacker and J. Wang, Physics implications of flat directions in free fermionic superstring models II: Renormalization group analysis, hep-ph/9811355.; G. Cleaver and M. Cvetic, J.R. Espinoza, L. Everett, P. Langacker and J. Wang, Physics implications of flat directions in free fermionic superstring models II: Renormalization group analysis, hep-ph/9811355.
[24] W. Pokorski and G.G. Ross, Flat directions, string compactification and 3 generation models, hep-ph/9809537.; W. Pokorski and G.G. Ross, Flat directions, string compactification and 3 generation models, hep-ph/9809537. · Zbl 0958.81203
[25] Work in progress.; Work in progress.
[26] Chung, D. J.H.; Kold, E. W.; Riotto, A., Superheavy dark matter, Phys. Rev. D, 59, 023501 (1999), [hep-ph/9802238]
[27] Kuzmin, V.; Tkachev, I., Ultrahigh energy cosmic rays, superheavy long living particles and matter creation after inflation, JETP Lett., 68, 271 (1998), [hep-ph/9802304]
[28] K. Benakli, J. Ellis and D.V. Nanopoulos, Natural candidates for superheavy dark matter in string and M-theory, hep-ph/9803333.; K. Benakli, J. Ellis and D.V. Nanopoulos, Natural candidates for superheavy dark matter in string and M-theory, hep-ph/9803333.
[29] Lopez, J.; Nanopoulos, D. V., Calculability and stability in the flipped string, Phys. Lett. B, 256, 150 (1991)
[30] Faraggi, A., Aspects of non-renormalizable terms in superstring derived standard-like models, Nucl. Phys. B, 403, 101 (1993)
[31] Friedan, D.; Martinec, E.; Shenker, S., The conformal field theory of orbifolds, Nucl. Phys. B, 282, 13 (1987)
[32] Kostelecky, V. A.; Lechtenfeld, O.; Lerche, W.; Samuel, S.; Watamura, S., Conformal techniques, bosonization and tree-level string amplitudes, Nucl. Phys. B, 288, 173 (1987)
[33] Di Francesco, P.; Saleur, H.; Zuber, J., Generalized Coulomb gas formalism for two-dimensional critical models based on SU(2) coset contruction, Nucl. Phys. B, 290, 527 (1987)
[34] Rizos, J., Construction and phenomenology of unified effective models from 4-D fermionic superstrings, (PhD Thesis (1991), University of Ioannina)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.