×

Degenerations of the moduli spaces of vector bundles on curves. II. (Generalized Gieseker moduli spaces). (English) Zbl 0957.14021

For part I see D. S. Nagaraj and C. S. Seshadri, ibid. 107, No. 2, 101-137 (1997; Zbl 0922.14023).
Let \(X_0\) be an irreducible projective curve of arithmetic genus \(g\geq 2\) whose singularity is one ordinary point. The authors give a generalisation of Gieseker’s construction for arbitrary rank. They construct a birational model \(G(n,d)\) of the moduli space \(U(n,d)\) of stable torsion free sheaves in the case \((n,d)=1,\) such that \(G(n,d)\) has normal crossing singularities and behaves well under specialization, i.e. if a smooth projective curve specializes to \(X_0,\) then the moduli space of stable vector bundles of rank \(n\) and degree \(d\) on \(X\) specializes to \(G(n,d)\). This generalizes an earlier work of Gieseker in the rank two case.
Theorem 1. There exists a canonical structure of a quasi-projective variety on \(G(n,d)\) and a canonical proper birational morphism \(\pi _{*}:G(n,d)\rightarrow U(n,d)_s\) onto the moduli space of stable torsion free sheaves on \(X_0.\) The singularities of \(G(n,d)\) are (analytic) normal crossings. If \((n,d)=1\), \(G(n,d)\) is projective, since \(U(n,d)_s=U(n,d)\) is projective.

MSC:

14H60 Vector bundles on curves and their moduli
14D15 Formal methods and deformations in algebraic geometry
14H10 Families, moduli of curves (algebraic)
14H20 Singularities of curves, local rings

Citations:

Zbl 0922.14023
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barth W, Peters C and Van de Ven A,Compact complex surfaces, Springer-Verlag (1984) · Zbl 0718.14023
[2] De Concini C and Procesi C, Complete symmetric varieties, In:Invariant Theory (ed. F Gherardelli)Lect. Notes Math.996 (1983) Springer-Verlag · Zbl 0581.14041
[3] Deligne P and Mumford D, The irreducibility of the space of curves of given genus,Publ. Math. Inst. des Hautes Etudes Scient. (1969) 75-109 · Zbl 0181.48803
[4] Faltings, G., Moduli stacks for bundles on semistable curves, Math. Ann., 304, 489-515 (1996) · Zbl 0847.14018 · doi:10.1007/BF01446303
[5] Gieseker, D., A degeneration of the moduli space of stable bundles, J. Differ. Geom., 19, 173-206 (1984) · Zbl 0557.14008
[6] Grothendieck A, Sur la mémoire de Weil “Généralisation des functions abéliennes”,Sémin. Bourbaki, Exposé141, 1956-57 · Zbl 0148.41503
[7] Mumford D,Geometric invariant theory, Springer-Verlag (1965) · Zbl 0147.39304
[8] Nagaraj, D. S.; Seshadri, C. S., Degeneration of the moduli spaces of vector bundles on curves I, Proc. Indian Acad. Sci. (Math. Sci.), 107, 101-137 (1997) · Zbl 0922.14023
[9] Newstead P E, Introduction to Moduli Problems and Orbit Spaces, TIFR, Bombay,Lect. Notes (1978) · Zbl 0411.14003
[10] Seshadri, C. S., Fibres vectoriels sur les courbes algébriques, Astérisque, 96, 1-209 (1982) · Zbl 0517.14008
[11] Seshadri, C. S., Geometric reductivity over orbitrary base, Adv. Math., 26, 225-274 (1977) · Zbl 0371.14009 · doi:10.1016/0001-8708(77)90041-X
[12] Seshadri C S, Mumford’s conjecture forGL(2) and applications,Alg. Geom. Bombay Colloq. (1968) 347-371 · Zbl 0194.51702
[13] Seshadri, C. S., Quotient spaces modulo reductive algebraic groups, Ann. Math., 85, 303-336 (1967) · Zbl 0173.23001 · doi:10.2307/1970444
[14] Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety, I.I.H.E.S., 79, 47-129 (1994) · Zbl 0891.14005
[15] Teixidor i Bigas M,Compactifications of moduli spaces of (semi)stable vector bundles on singular curves: Two points of view (Preprint)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.