×

Ricci-flat branes. (English) Zbl 0953.83041

Summary: Up to overall harmonic factors, the D8-brane solution of the massive type IIA supergravity theory is the product of nine-dimensional Minkowski space (the world-volume) with the real line (the transverse space). We show that the equations of motion allow for the world-volume metric to be generalised to an arbitrary Ricci-flat one. If this nine-dimensional Ricci-flat manifold admits Killing spinors, then the resulting solutions are supersymmetric and satisfy the usual Bogomol’nyi bound, although they preserve fewer than the usual one half of the supersymmetries. We describe the possible choices of such manifolds, elaborating on the connection between the existence of Killing spinors and the self-duality condition on the curvature two-form. Since the D8-brane is a domain wall in ten dimensions, we are led to consider the general case: domain walls in any supergravity theory. Similar considerations hold here also. Moreover, it is shown that the world-volume of any magnetic brane – of which the domain walls are a specific example – can be generalised in precisely the same way. The general class of supersymmetric solutions have gravitational instantons as their spatial sections. Some mention is made of the world-volume solitons of such branes.

MSC:

83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
53C80 Applications of global differential geometry to the sciences
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hull, C. M., Nucl. Phys. B, 468, 113 (1996)
[2] Polchinski, J., Phys. Rev. Lett., 75, 4724 (1995)
[3] Romans, L. J., Phys. Lett. B, 169, 374 (1986)
[4] Bergshoeff, E.; De Roo, M.; Green, M. B.; Papadopoulos, G.; Townsend, P. K., Nucl. Phys. B, 470, 113 (1996)
[5] Polchinski, J.; Witten, E., Nucl. Phys. B, 460, 525 (1996)
[6] Hull, C. M., J. High Energy Phys., 027, 9811 (1998)
[7] E. Bergshoeff, J.P. van der Schaar, On M9-branes, hep-th/9806069.; E. Bergshoeff, J.P. van der Schaar, On M9-branes, hep-th/9806069.
[8] Howe, P. S.; Lambert, N. D.; West, P. C., Phys. Lett. B, 416, 303 (1998)
[9] Lavrinenko, I. V.; Lü, H.; Pope, C. N., Class. Quant. Grav., 15, 2239 (1998)
[10] Duff, M. J.; Lü, H.; Pope, C. N.; Sezgin, E., Phys. Lett. B, 371, 206 (1996)
[11] Gauntlett, J. P.; Gibbons, G. W.; Papadopoulos, G.; Townsend, P. K., Nucl. Phys. B, 500, 133 (1997)
[12] Bakas, I.; Floratos, E. G.; Kehagias, A., Phys. Lett. B, 445, 69 (1998)
[13] Janssen, B.; Meessen, P.; Ortı́n, T., Phys. Lett. B, 453, 229 (1999)
[14] Lü, H.; Pope, C. N.; Townsend, P. K., Phys. Lett. B, 391, 39 (1997)
[15] J.M. Figueroa-O’Farrill, Breaking the M-Waves, hep-th/9904124.; J.M. Figueroa-O’Farrill, Breaking the M-Waves, hep-th/9904124.
[16] Nester, J., Phys. Lett., 83A, 241 (1981)
[17] Dabholkar, A.; Gibbons, G. W.; Harvey, J. A.; Ruiz-Ruiz, F., Nucl. Phys. B, 340, 33 (1990)
[18] Berger, M., Bull. Soc. Math. France, 83, 279 (1955)
[19] Acharya, B. S.; O’Loughlin, M., Phys. Rev. D, 55, 4521 (1997)
[20] Corrigan, E.; Devchand, C.; Fairlie, D. B.; Nuyts, J., Nucl. Phys. B, 214, 452 (1983)
[21] J.M. Figueroa-O’Farrill, private communication.; J.M. Figueroa-O’Farrill, private communication.
[22] Joyce, D. D., Invent. Math., 123, 507 (1996)
[23] Joyce, D. D., Diff. Geom., 43, 291 (1996)
[24] Joyce, D. D., Diff. Geom., 43, 329 (1996)
[25] Gibbons, G. W.; Page, D. N.; Pope, C. N., Commun. Math. Phys., 127, 529 (1990)
[26] Awada, M. A.; Duff, M. J.; Pope, C. N., Phys. Rev. Lett., 50, 294 (1983)
[27] Scherk, J.; Schwarz, J. H., Phys. Lett. B, 82, 60 (1979)
[28] Floratos, E. G.; Kehagias, A., Phys. Lett. B, 427, 283 (1998)
[29] Lü, H.; Pope, C. N.; Sezgin, E.; Stelle, K. S., Phys. Lett. B, 371, 46 (1996)
[30] Calabi, E., Ann. Scient. Èc. Norm. Sup., 12, 269 (1979)
[31] Gross, D. J.; Perry, M. J., Nucl. Phys. B, 226, 29 (1983)
[32] Sorkin, R. D., Phys. Rev. Lett., 51, 87 (1983)
[33] Hořava, P.; Witten, E., Nucl. Phys. B, 460, 506 (1996)
[34] Hořava, P.; Witten, E., Nucl. Phys. B, 475, 94 (1996)
[35] Lukas, A.; Ovrut, B. A.; Stelle, K. S.; Waldram, D., Phys. Rev. D, 59, 086001 (1999)
[36] Kasner, E., Am. J. Math., 43, 126 (1921)
[37] A. Kaya, A note on the relation between the Killing spinor and Einstein equations, hep-th/9902010.; A. Kaya, A note on the relation between the Killing spinor and Einstein equations, hep-th/9902010.
[38] Cherkis, S.; Schwarz, J. H., Phys. Lett. B, 403, 225 (1997)
[39] Gauntlett, J. P.; Gomis, J.; Townsend, P. K., J. High Energy Phys., 01, 003 (1998)
[40] Eguchi, T.; Hanson, A. J., Ann. Phys., 120, 82 (1979)
[41] Howe, P. S.; Lambert, N. D.; West, P. C., Nucl. Phys. B, 515, 203 (1998)
[42] Tseytlin, A. A., Nucl. Phys. B, 501, 41 (1997)
[43] Brecher, D.; Perry, M. J., Nucl. Phys. B, 527, 121 (1998)
[44] Charap, J. M.; Duff, M. J., Phys. Lett. B, 69, 445 (1977)
[45] Brecher, D., Phys. Lett. B, 442, 117 (1998)
[46] Callan, C. G.; Friedan, D.; Martinec, E. J.; Perry, M. J., Nucl. Phys. B, 262, 593 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.