×

An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator. (English) Zbl 0949.65141

Summary: We investigate a method of realization of the discrete velocity approximation of the Boltzmann collision operator studied by A. Palczewski, J. Schneider and A. V. Bobylev [SIAM J. Numer. Anal. 34, No. 5, 1865-1883 (1997; Zbl 0895.76083)]. For this realization, we propose an acceleration procedure, which reduces the computational complexity of the method. The efficiency of the acceleration procedure is demonstrated through a set of numerical tests, which include space homogeneous relaxation problems and space nonhomogeneous problems of shock wave formation.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
82C40 Kinetic theory of gases in time-dependent statistical mechanics
65Y20 Complexity and performance of numerical algorithms

Citations:

Zbl 0895.76083
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cercignani, C., Theory and Applications of the Boltzmann Equation (1988), Springer-Verlag
[2] Truesdell, C.; Muncaster, R., Fundamentals of Maxwell’s Kinetic Theory of a Simple Monoatomic Gas (1980), Academic Press
[3] Nordsieck, A.; Hicks, B. L., Monte Carlo evaluation of the Boltzmann collision integral, (Brundin, C. L., Proc. \(5^{th}\) Intern. Symp. on RGD, Volume 1 (1967), Academic Press), 695-710
[4] Hicks, B. L.; Yen, S. M., Collision integrals for rarefied gas flow problems, (Nocilla, S., Proc. \(7^{th}\) Intern. Symp. on RGD, Volume 2 (1971), Editrice Tecnico Scientica: Editrice Tecnico Scientica Pisa), 845-852
[5] Aristov, V. V.; Tcheremissine, F. G., Direct Numerical Solutions of the Kinetic Boltzmann Equation (1992), Computing Center of Russian Academy of Sciences: Computing Center of Russian Academy of Sciences Moscow, (in Russian) · Zbl 0850.65359
[6] Yen, S. M., Numerical solution of the nonlinear Boltzmann equation for nonequilibrium gas flow problems, Annual Review of Fluid Mechanics, Volume 16, 67-97 (1984) · Zbl 0595.76077
[7] Tcheremissine, F. G., The development of the direct solution of the Boltzmann equation, (Numerical Methods in Rarefied Gas Dynamics, Volume 1 (1973), Computing Center of USSR Academy of Sciences: Computing Center of USSR Academy of Sciences Moscow), 74-101, (in Russian) · Zbl 1156.82382
[8] Aristov, V. V.; Tcheremissine, F. G., The conservative splitting method for solving the Boltzmann equation, USSR Comp. Math. Phys., 21, 1, 208-225 (1980) · Zbl 0458.76061
[9] Tcheremissine, F. G., Conservative evaluation of Boltzmann collision integral in discrete ordinates approximation, Computers Math. Applic., 35, 1/2, 215-221 (1998) · Zbl 0911.76071
[10] Goldstein, D.; Sturtevant, B.; Broadwell, J. E., Investigation of the motion of discrete velocity gases, (Muntz, E. P.; Weaver, D. P.; Campbell, D. H., RGD: Theoretical and Computational Techniques, Volume 118 (1989), Progress in Astronautics and Aeronautics, AIAA: Progress in Astronautics and Aeronautics, AIAA Washington, DC)
[11] Inamuro, T.; Sturtevant, B., Numerical study of discrete velocity gases, Phys. Fluids A, 2, 12, 2196-2203 (1990) · Zbl 0718.76087
[12] Martin, Y. L.; Rogier, F.; Schneider, J., Une methode deterministe pour la resolution de l’equation de Boltzmann inhomogene, C. R. Acad. Sci. Paris, 314, 483-487 (1992) · Zbl 0747.65098
[13] Schneider, J., Une methode deterministe pour la resolution de l’equation de Boltzmann, (Thesis (1993), Universite Paris VI) · Zbl 0747.65098
[14] Buet, C., A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics, Trans. Theory Stat. Phys., 25, 33-60 (1996) · Zbl 0857.76079
[15] Rogier, F.; Schneider, J., A direct method of solving the Boltzmann equation, Transp. Theory Stat. Phys., 23, 1/2, 313-338 (1994) · Zbl 0811.76050
[16] Mischler, S., Convergence of discrete—Velocity schemes for the Boltzmann equation, Arch. Rational Mech. Anal., 140, 53-77 (1997) · Zbl 0898.76089
[17] Bobylev, A. V.; Palczewski, A.; Schneider, J., On approximation of the Boltzmann equation by discrete velocity models, C. R. Acad. Sci. Paris, 320, S. I, 539-544 (1995)
[18] Palczewski, A.; Schneider, J.; Bobylev, A. V., A consistency result for discrete—Velocity model of the Boltzmann equation, SIAM J. Numer. Anal., 34 (1997) · Zbl 0895.76083
[19] Palczewski, A.; Schneider, J., Existence, stability, and convergence of solutions of discrete velocity models to the Boltzmann equation, J. Stat. Phys., 91, 1/2, 307-326 (1998) · Zbl 0918.76048
[20] Tan, Z.; Varghese, L., The Δ - ϵ method for the Boltzmann equation, Journ. Comput. Phys., 110, 327-340 (1994) · Zbl 0797.65114
[21] Krook, M.; Wu, T. T., Exact solutions of the Boltzmann equation, Phys. Fluids A, 20, 10, 1589-1595 (1977) · Zbl 0369.76075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.