×

Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. (English) Zbl 0945.82568

Summary: We study Onsager’s theory of large, coherent vortices in turbulent flows in the approximation of the point-vortex model for two-dimensional Euler hydrodynamics. In the limit of a large number of point vortices with the energy per pair of vortices held fixed, we prove that the entropy defined from the microcanonical distribution as a function of the (pair-specific) energy has its maximum at a finite value and thereafter decreases, yielding the negative-temperature states predicted by Onsager. We furthermore show that the equilibrium vorticity distribution maximizes an appropriate entropy functional subject to the constraint of fixed energy, and, under regularity assumptions, obeys the Joyce-Montgomery mean-field equation. We also prove that, under appropriate conditions, the vorticity distribution is the same as that for the canonical distribution, a form of equivalence of ensembles. We establish a large-fluctuation theory for the microcanonical distributions, which is based on a level-3 large-deviation theory for exchangeable distributions. We discuss some implications of that property for the ergodicity requirements to justify Onsager’s theory, and also the theoretical foundations of a recent extension to continuous vorticity fields by R. Robert and J. Miller. Although the theory of two-dimensional vortices is of primary interest, our proofs actually apply to a very general class of mean-field models with long-range interactions in arbitrary dimensions.

MSC:

82D15 Statistical mechanics of liquids
76F99 Turbulence
76M35 Stochastic analysis applied to problems in fluid mechanics
60F10 Large deviations
82B30 Statistical thermodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Onsager, Statistical hydrodynamics,Nuovo Cimento Suppl. 6:279-289 (1949).
[2] A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics, Vols. I, II (MIT Press, Cambridge, Massachusetts, 1975).
[3] J. O. Hinze,Turbulence, 2nd ed. (McGraw-Hill, New York, 1975).
[4] A. J. Chorin, Equilibrium statistics of a vortex filament with applications,Commun. Math. Phys. 141:619-631 (1991). · Zbl 0734.76015
[5] R. H. Kraichnan and D. Montgomery, Two-dimensional turbulence,Rep. Prog. Phys. 43:547-619 (1980).
[6] G. Kirchhoff,Vorlesungen ?ber mathematische Physik (B. G. Teubener, Leipzig, 1877). · JFM 09.0597.01
[7] C. Marchioro and M. Pulvirenti,Vortex Methods in Two-Dimensional Fluid Dynamics (Springer, Berlin, 1984). · Zbl 0545.76027
[8] E. A. Overman and N. J. Zabusky, Evolution and merger of isolated vortex structures,Phys. Fluids 25:1297-1305 (1982). · Zbl 0489.76033
[9] D. D?rr and M. Pulvirenti, On the vortex flow in bounded domains,Commun. Math. Phys. 85:265-273 (1982). · Zbl 0503.60069
[10] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence,Phys. Fluids 10:1417-1423 (1967).
[11] J. McWilliams, The emergence of isolated coherent vortices in turbulent flow,J. Fluid Mech. 146:21 (1984). · Zbl 0561.76059
[12] D. S. Deem and N. J. Zabusky, Ergodic boundary in numerical simulations of two-dimensional turbulence,Phys. Rev. Lett. 27:397-381 (1971). · Zbl 0232.76052
[13] K. M. Khanin, Quasi-periodic motions of vortex systems,Physica D 4:261-269 (1982). · Zbl 1194.76028
[14] T. S. Lundgren and Y. B. Pointin, Statistical mechanics of two-dimensional vortices,J. Stat. Phys. 17:323-355 (1977). · Zbl 0339.76013
[15] A. J. Chorin, Turbulence and vortex stretching on a lattice,Commun. Pure Appl. Math. XXXIX:547-565 (1986). · Zbl 0595.60098
[16] L. van Hove, Quelques propri?t?s g?n?rais de l’int?grale d’un syst?me de particules avec interaction,Physica 15:951-961 (1949). · Zbl 0036.40602
[17] J. Fr?hlich and D. Ruelle, Statistical mechanics of vortices in an in viscid two-dimensional fluid,Commun. Math. Phys. 87:1-36 (1982). · Zbl 0505.76037
[18] J. Messer and H. Spohn, Statistical mechanics of the isothermal Lane-Emden equation,J. Stat. Phys. 29:561-578 (1982).
[19] E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics approach,Commun. Math. Phys. 143:501-525 (1992). · Zbl 0745.76001
[20] M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions,Commun. Pure Appl. Math. (1992). · Zbl 0811.76002
[21] D. Montgomery and G. Joyce, Statistical mechanics of ?negative temperature? states,Phys. Fluids 17:1139-1145 (1974).
[22] G. Joyce and D. Montgomery, Negative temperature states for the two-dimensional guiding center plasma,J. Plasma Phys. 10:107-121 (1973).
[23] J. Sommeria, C. Staquet, and R. Robert, Final equilibrium state of a two-dimensional shear layer,J. Fluid Mech. 233:661-689 (1991). · Zbl 0738.76031
[24] D. Montgomery, W. H. Matthaeus, W. T. Stribling, D. Martinez, and S. Oughton, Relaxation in two dimensions and the ?sinh-Poisson? equation,Phys. Fluids A 4:3-6 (1992). · Zbl 0850.76485
[25] J. Miller, Statistical mechanics of Euler equations in two dimensions,Phys. Rev. Lett. 65:2137-2140 (1990). · Zbl 1050.82553
[26] V. Arnol’d,Mathematical Methods of Classical Mechanics (Springer, New York, 1978).
[27] J. Marsden and A. Weinstein, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids,Physica 7:305-323 (1983). · Zbl 0576.58008
[28] J. Miller, Statistical mechanics of two-dimensional Euler equations and Jupiter’s Great Red Spot, Ph.D. Thesis, California Institute of Technology, Pasadena, California.
[29] R. Robert, A maximum-entropy principle for two-dimensional perfect fluid dynamics,J. Stat. Phys. 65:531-554 (1991). · Zbl 0935.76530
[30] B. de Finetti, Funzione caratteristica di un fenomeno aleatorio,Atti R. Accad. Naz. Lincei Ser. 6 Mem. Classe Sci. Fis. Mat. Nat. 4:251-300 (1931).
[31] L. Breiman,Probability (Addison-Wesley, Reading, Massachusetts, 1968).
[32] E. Caglioti, Misure invarianti per l’equazione di Eulero bidimensionale. Meccanica statistica per il modello a vortici, Dottorato di Ricerca in F?sica IV Ciclo, Universit? di Roma, Rome, Italy.
[33] H.-O. Georgii, Large deviations and maximum entropy principle for interacting random fields on ?d,Ann. Prob. (1992).
[34] I. Csisz?r, Sanov property, generalizedI-projection, and a conditional limit theorem,Ann. Prob. 12:768-793 (1984). · Zbl 0544.60011
[35] I. Ioffe and V. Tikhomirov, Duality of convex functions and extremum problems,Russ. Math. Surv. 23:53-124 (1968). · Zbl 0191.13101
[36] P. Groeneboom, J. Oosterhoff, and F. H. Ruymgaart, Large deviation theorems for empirical probability measures,Ann. Prob. 7:553-586 (1979). · Zbl 0425.60021
[37] P. Marcus, Vortex dynamics in a shearing zonal flow,J. Fluid Mech. 215:393-430 (1990). · Zbl 0698.76030
[38] J. Miller, P. B. Weichman, and M. C. Cross, Statistical mechanics, Euler’s equations, and Jupiter’s Red Spot,Phys. Rev. A 45:2328-2359 (1992).
[39] V. Zeitlin, Finite-mode analogs of 2-D ideal hydrodynamics: Coadjoint orbits and local canonical structure,Physica D 49:353-362 (1991). · Zbl 0724.76004
[40] O. Hald, Convergence of Fourier methods for Navier-Stokes equations,J. Comp. Phys. 40:305-317 (1981). · Zbl 0466.76023
[41] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products,Trans. Am. Math. Soc. 80:470-501 (1955). · Zbl 0066.29604
[42] H.-O. Georgii,Gibbs Measures and Phase Transitions (Walter de Gruyter, Berlin, 1988). · Zbl 0657.60122
[43] K. R. Parthasarathy,Probability Measures on Metric Spaces (Academic Press, New York, 1967). · Zbl 0153.19101
[44] E. B. Dynkin, Klassy ekvivalentnyh slu?ainyh veli?in,Uspekhi Mat. Nauk 8:125-134 (1953).
[45] S. R. S. Varadhan,Large Deviations and Applications (Society for Industrial and Applied Mathematics, Philadelphia, 1984).
[46] H. F?llmer, Random fields and diffusion processes, in?cole d’?t? de Probabilit?s de Saint-Flour XV?XVII, P. L. Hennequin, ed. (Springer, Berlin, 1988).
[47] H. F?llmer and S. Orey, Large deviations for the empirical field of a Gibbs measure,Ann. Prob. 16:961-977 (1988). · Zbl 0648.60028
[48] R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985). · Zbl 0566.60097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.