×

Fox function representation of non-Debye relaxation processes. (English) Zbl 0945.82559

Summary: Applying the Liouville-Riemann fractional calculus, we derive and solve a fractional operator relaxation equation. We demonstrate how the exponent \(\beta\) of the asymptotic power law decay \(\sim t^{-\beta}\) relates to the order \(\nu\) of the fractional operator \(d^{\nu} / dt^{\nu}\) \((0 < \nu < 1)\). Continuous-time random walk (CTRW) models offer a physical interpretation of fractional order equations, and thus we point out a connection between a special type of CTRW and our fractional relaxation model. Exact analytical solutions of the fractional relaxation equation are obtained in terms of Fox functions by using Laplace and Mellin transforms. Apart from fractional relaxation, Fox functions are further used to calculate Fourier integrals of Kohlrausch-Williams-Watts type relaxation functions. Because of its close connection to integral transforms, the rich class of Fox functions forms a suitable framework for discussing slow relaxation phenomena.

MSC:

82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
33C60 Hypergeometric integrals and functions defined by them (\(E\), \(G\), \(H\) and \(I\) functions)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. W. Barnes,Proc. Lond. Math. Soc. 6:141 (1908). · JFM 39.0506.01 · doi:10.1112/plms/s2-6.1.141
[2] H. J. Meilin,Math. Ann. 68:305 (1910). · JFM 41.0500.04 · doi:10.1007/BF01475775
[3] A. L. Dixon and W. L. Ferrar,Q. J. Math. Oxford Ser. 7:81 (1936). · Zbl 0014.10804 · doi:10.1093/qmath/os-7.1.81
[4] C. Fox,Trans. Am. Math. Soc. 98:395 (1961).
[5] B. L. J. Braaksma,Compos. Math. 15:239 (1964).
[6] A. M. Mathai and R. K. Saxena,The H-Function with Applications in Statistics and Other Disciplines (Wiley Eastern Limited, New Delhi, 1978). · Zbl 0382.33001
[7] W. R. Schneider, inStochastic Processes in Classical and Quantum Systems, S. Albeverio, G. Casati, and D. Merlini, eds. (Springer, Berlin, 1986).
[8] W. R. Schneider and W. Wyss,J. Math. Phys. 30:134 (1989). · Zbl 0692.45004 · doi:10.1063/1.528578
[9] G. Baumann, M. Freyberger, W. G. Glöckle, and T. F. Nonnenmacher,J. Phys. A: Math. Gen. 24:5085 (1991). · Zbl 0758.45007 · doi:10.1088/0305-4470/24/21/020
[10] I. A. Campbell and C. Giovannella, eds.,Relaxation in Complex Systems and Related Topics (Plenum Press, New York, 1990).
[11] R. L. Bagley and P. J. Torvik,J. Rheol. 27:201 (1983). · Zbl 0515.76012 · doi:10.1122/1.549724
[12] R. C. Koeller,J. Appl. Mech. 51:299 (1984). · Zbl 0544.73052 · doi:10.1115/1.3167616
[13] C. Friedrich,Rheol. Acta 30:151 (1991). · doi:10.1007/BF01134604
[14] T. F. Nonnenmacher, inRheological Modeling: Thermodynamical and Statistical Approaches, J. Casas-Vázquez and D. Jou, eds. (Springer, Berlin, 1991).
[15] T. F. Nonnenmacher and W. G. Glöckle,Phil. Mag. Lett. 64:89 (1991). · doi:10.1080/09500839108214672
[16] W. G. Glöckle and T. F. Nonnenmacher,Macromolecules 24:6426 (1991). · doi:10.1021/ma00024a009
[17] W. G. Glöckle and T. F. Nonnenmacher, inProceedings of the 3rd International Conference Locarno: Stochastic Processes, Physics and Geometry, to appear.
[18] M. F. Shlesinger,J. Stat. Phys. 36:639 (1984). · Zbl 0587.60081 · doi:10.1007/BF01012928
[19] A. Blumen, J. Klafter, and G. Zumofen, inOptical Spectroscopy of Glasses, I. Zschokke, ed. (Reidel, Dordrecht, 1986).
[20] W. Wyss,J. Math. Phys. 27:2782 (1986). · Zbl 0632.35031 · doi:10.1063/1.527251
[21] T. F. Nonnenmacher and D. J. F. Nonnenmacher,Acta Phys. Hung. 66:145 (1989).
[22] K. B. Oldham and J. Spanier,The Fractional Calculus (Academic Press, New York, 1974). · Zbl 0292.26011
[23] F. Oberhoettinger,Tables of Mellin Transforms (Springer, Berlin, 1974).
[24] T. F. Nonnenmacher,J. Phys. A: Math. Gen. 23:L697 (1990). · Zbl 0709.60546 · doi:10.1088/0305-4470/23/14/001
[25] S. H. Glarum,J. Chem. Phys. 33:639 (1960). · doi:10.1063/1.1731229
[26] E. W. Montroll and G. H. Weiss,J. Math. Phys. 6:167 (1965). · Zbl 1342.60067 · doi:10.1063/1.1704269
[27] M. F. Shlesinger,J. Stat. Phys. 10:421 (1974). · doi:10.1007/BF01008803
[28] H. Scher and E. W. Montroll,Phys. Rev. B 12:2455 (1975). · doi:10.1103/PhysRevB.12.2455
[29] A. Blumen, J. Klafter and G. Zumofen,Phys. Rev. B 27:3429 (1983). · doi:10.1103/PhysRevB.27.3429
[30] M. F. Shlesinger and E. W. Montroll,Proc. Natl. Acad. Sci. USA 81:1280 (1984). · doi:10.1073/pnas.81.4.1280
[31] J. D. Ferry,Viscoelastic Properties of Polymers (Wiley, New York, 1970).
[32] J. T. Bendler,J. Stat. Phys. 34:625 (1984). · Zbl 0584.73003 · doi:10.1007/BF01012927
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.