×

A stochastic wave equation in two space dimensions: smoothness of the law. (English) Zbl 0944.60067

One considers real-valued solutions of stochastic wave equations of the type \[ \left( {\partial^2\over\partial t^2}-\Delta \right) u(t,x) =\sigma(u(t,x))F(dt,dx)+b(u(t,x)) \] with two-dimensional spatial variable \(x\) and given initial conditions \(u(0,x)\) and \({\partial u\over \partial t}u(0,x)\). The noise \(F(dt,dx)\) is assumed to be white in time, and its spatial correlation is described by a function \(f\). Under an integral condition on \(f\), the existence and uniqueness of a solution \(u(t,x)\) is proved. Then the Malliavin calculus is applied to the smoothness of its law.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H07 Stochastic calculus of variations and the Malliavin calculus
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albeverio, S., Haba, A. and Russo, F. (1996). Trivial solutions for a non-linear two space dimensional wave equation perturbed by a space-time white noise. Stochastics Stochastics Rep. 56 127-160. · Zbl 0887.60069
[2] Bally, V. and Pardoux, E. (1998). Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal. 9 27-64. · Zbl 0928.60040 · doi:10.1023/A:1008686922032
[3] Carmona, R. and Nualart, D. (1988). Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields 79 469-508. · Zbl 0635.60073 · doi:10.1007/BF00318783
[4] Dalang, R. and Frangos, N. (1998). The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 187-212. · Zbl 0938.60046 · doi:10.1214/aop/1022855416
[5] Dunford, N. and Schwarz, J. T. (1988). Linear Operators I: General Theory. Wiley, New York.
[6] Karczewska, A. and Zabczyk, J. (1997). A note on stochastic wave equations. Preprint 574, Polish Academy of Sciences. · Zbl 0978.60066
[7] Métivier, M. (1982). Semimartingales. de Gruyter, Berlin.
[8] Mueller, C. (1997). Long time existence for the wave equation with a noise term. Ann. Probab. 25 133-151. · Zbl 0884.60054 · doi:10.1214/aop/1024404282
[9] Nualart, D. (1995). Malliavin Calculus and Related Topics. Springer, New York. · Zbl 0837.60050
[10] Nualart, D. (1998). Analysis on the Wiener space and anticipating calculus. École d’ Été de Probabilités de Saint-Flour XXV. Lecture Notes in Math. 1690 863-901. Springer, Berlin.
[11] Rovira, C. and Sanz-Solé, M. (1996). The law of the solution to a nonlinear hyperbolic SPDE. J. Theoret. Probab. 9 863-901. · Zbl 0878.60040 · doi:10.1007/BF02214255
[12] Stroock, D. W. (1993). Probability Theory: An Analytic View. Cambridge Univ. Press. · Zbl 0925.60004
[13] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. École d’ Été de probabilités de Saint-Flour XIV. Lecture Notes in Math. 1180 266-437. Springer, Berlin. · Zbl 0608.60060
[14] Watanabe, S. (1984). Lectures on stochastic differential equations and Malliavin calculus. Tata Inst. Fund. Res. Springer, Berlin. · Zbl 0546.60054
[15] Wilcox, C. H. (1991). The Cauchy problem for the wave equation with distributional data: an elementary approach. Amer. Math. Monthly 98 401-410. · Zbl 0752.35032 · doi:10.2307/2323855
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.