×

The Ledger curvature conditions and D’Atri geometry. (English) Zbl 0944.53025

The main result of this paper is the following Theorem. Let \((M,g)\) be a Riemannian 3-manifold which is “cyclic Ricci-parallel”, i.e., it satisfies the identity \((\nabla_X\text{Ric})(X,X)=0\). Then \((M,g)\) is a D’Atri space (i.e., a space with volume-preserving local geodesic symmetries) and, in particular, it is locally homogeneous. The reviewer [Rend. Semin. Mat., Torino, Fasc. Spec., 131-158 (1983; Zbl 0631.53033)] classified all 3-dimensional D’Atri spaces using the above identity (called the 3rd Ledger condition \(L_3)\) and the next natural identity of higher order (the Ledger condition \(L_5)\), which are both necessary conditions for a Riemannian manifold to be a D’Atri space. Hence, the present authors proved that the condition \(L_5\) follows from the condition \(L_3\) in dimension 3. On the other hand, they give a 5-dimensional example satisfying the condition \(L_3\) but not the condition \(L_5\).

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C30 Differential geometry of homogeneous manifolds
53C22 Geodesics in global differential geometry

Citations:

Zbl 0631.53033
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbena, E.; Garbiero, S.; Vanhecke, L., Einstein-like metrics on 3-dimensional Riemannian homogeneous manifolds, Simon Stevin, 66, 173-183 (1992) · Zbl 0786.53028
[2] Atiyah, M. F.; Hirzebruch, F., Spin-manifolds and group actions, (Haefliger, A.; Narasimhan, R., Essays on Topology and Related Topics. Essays on Topology and Related Topics, Memoires dédiés à Georges de Rham (1970), Springer: Springer New York), 18-28 · Zbl 0193.52401
[3] Besse, A., Einstein Manifolds (1987), Springer: Springer Berlin · Zbl 0613.53001
[4] D.M.J. Calderbank and H. Pedersen, Einstein-Weyl geometry, in: Essays on Einstein Geometry (International Press, to appear).; D.M.J. Calderbank and H. Pedersen, Einstein-Weyl geometry, in: Essays on Einstein Geometry (International Press, to appear). · Zbl 0996.53030
[5] D’Atri, J. E.; Nickerson, H. K., Divergence-preserving geodesic symmetries, J. Diff. Geom., 3, 467-476 (1969) · Zbl 0195.23604
[6] D’Atri, J. E.; Nickerson, H. K., Geodesic symmetries in spaces with special curvature tensors, J. Diff. Geom., 9, 251-262 (1974) · Zbl 0285.53019
[7] Jelonek, W., K-Contact \(A\)-manifolds, (Colloquium Mathematicum, 75 (1998)), 97-103 · Zbl 0893.53018
[8] Jelonek, W., On \(A\)-Tensors in Riemannian geometry, (Preprint 551 (1995), Polish Acad. Sci)
[9] Koiso, N.; Sakane, Y., Non-homogeneous Kähler-Einstein metrics on compact complex manifolds II, Osaka J. Math., 25, 933-959 (1988) · Zbl 0704.53052
[10] Kowalski, O., Spaces with volume preserving symmetries and related classes of Riemannian manifolds, (Rend. Sem. Math. Univ. Politec. Tor. Fascicolo Speciale (1983)), 131-158
[11] Kowalski, O.; Prüfer, F.; Vanhecke, L., D’Atri spaces, (Gindikin, S., Topics in Geometry: in Memory of Joseph D’Atri (1996), Birkhauser: Birkhauser Boston), 241-284 · Zbl 0862.53039
[12] Ledger, A. J., Harmonic Riemannian spaces, (Ph.D. thesis (1954), University of Durham) · Zbl 0084.37406
[13] Pedersen, H.; Swann, A., Riemannian Submersions, four-manifolds and Einstein-Weyl geometry, (Proc. London Math. Soc., 66 (1993)), 381-399 · Zbl 0742.53014
[14] Penrose, R.; Rindler, W., (Spinors and Space-time, Vol. 2 (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge)
[15] Pruefer, F.; Triceri, F.; Vanhecke, L., Curvature invariants, differential operators and homogeneity, Trans. Amer. Math. Soc., 348, 4643-4652 (1996) · Zbl 0867.53032
[16] Singer, I. M., Infinitesimally homogeneous spaces, Comm. Pure and Appl. Maths., 13, 685-697 (1960) · Zbl 0171.42503
[17] Szabó, Z. I., Spectral theory for operator families on Riemannian manifolds, (Proc. Symp. Pure Maths., 54 (1993)), 615-665, (3) · Zbl 0791.58100
[18] Tod, K. P., Four-dimensional D’Atri Einstein spaces are locally symmetric, Diff. Geom. Appl., 11, 55-67 (1999) · Zbl 0930.53028
[19] Willmore, T. J., Riemannian Geometry (1993), Oxford Science Publications: Oxford Science Publications Oxford · Zbl 0797.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.