×

Topology of complex polynomials via polar curves. (English) Zbl 0939.32027

The authors consider the global polar curves associated with an affine smooth hypersurface \(F\) in \(\mathbb{C}^n\).
If \(f\in \mathbb{C}[x_1, \dots,x_n]\) is a polynomial such that the fiber \(F_t:= f^{-1}(t)\) is smooth and connected, the main result computes the Euler characteristic \(\chi(F_t)\) of \(F_t\) in terms of the polar invariants of the intersections \(F_t\cap E^k\), where \(E^k\) is a general linear subspace of \(\mathbb{C}^n\) of codimension \(k\), \(k=0,1, \dots,n-1\).

MSC:

32S50 Topological aspects of complex singularities: Lefschetz theorems, topological classification, invariants
32C18 Topology of analytic spaces
32A17 Special families of functions of several complex variables
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Assi, Meromorphic plane curves, · Zbl 0934.32017 · doi:10.1007/PL00004682
[2] E. ARTAL-BARTOLO, I. LUENGO-VELASCO AND A. MELLE-HERNANDEZ, Milnor number a infinity, topology and Newton boundary of a polynomial function, · Zbl 0956.32025 · doi:10.1007/s002090050493
[3] A. DIMCA, Milnor numbers and multiplicities of dual varieties, Rev. Roumame Math Pures Appl., 31 (1986), 535-538. · Zbl 0606.14002
[4] A. DIMCA, Singularities and Topology of Hypersurfaces, Universitext, Springer, 1992 · Zbl 0753.57001
[5] J. H. GRACE AND A. YOUNG, The Algebra of Invariants, Cambridge Univ. Press, 1903 · JFM 34.0114.01
[6] H. V HAAND D. T. LE, Surla topologie despolynmes complexes, Acta Math. Vietnam., 9 (1984), 21-32
[7] S. L. KLEIMAN, Theenumerative theory of singularities, Real and Complex Singularitie (Oslo 1976), Sijthoff and Noordhof, 1977, 297-396. · Zbl 0385.14018
[8] K. LAMOTKE, The topology of complex projective varieties after S. Lefschetz, Topology, 2 (1981), 15-51. · Zbl 0445.14010 · doi:10.1016/0040-9383(81)90013-6
[9] D. T. LE AND B. TEISSIER, Varietes polaires locales et classes de Chern des varietes sin gulieres, Ann. of Math., 114 (1981), 457-491. · Zbl 0488.32004 · doi:10.2307/1971299
[10] A. NEMETHI, Theoe de Lefschetz pour les varietes algebques afiines, C. R. Acad. Sci Pans Ser. I Math., 303 (1986), 567-570. · Zbl 0612.14007
[11] A. NEMETHI, Lefschetz theory for complex afine vaeties, Rev. Roumaine Math. Pure Appl., 33 (1988), 233-260. · Zbl 0665.14003
[12] A. NEMETHI AND A. ZAHARIA, On the bifurcation setof a polynomial function and Newto boundary, Publ. Res. Inst. Math. Sci., 26 (1990), 681-689. · Zbl 0736.32024 · doi:10.2977/prims/1195170853
[13] L. PAUNESCU AND A. ZAHARIA, On the Lojasiewicz exponent at infinity for polynomia functions, Kodai Math. J., 20 (1997), 269-274. · Zbl 0961.32024 · doi:10.2996/kmj/1138043796
[14] D. SIERSMA AND M. TIBAR, Singularities at infinity and their vanishing cycles, Duke Math J., 80 (1995), 771-783. · Zbl 0871.32024 · doi:10.1215/S0012-7094-95-08026-0
[15] B. TEISSIER, Cycles evanescents, sections planes et conditions de Whitney, Singulates Cargese 1972, Astesque, 7-8 (1973), 285-362. · Zbl 0295.14003
[16] M. TIBAR, Global equisingulaty of families of affine hypersurfaces,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.