×

A general class of estimators of the extreme value index. (English) Zbl 0929.62034

A sequence of i.i.d. variables having common distribution \(F\) is observed. This distribution belongs to the weak domain of attraction of some extreme value distribution \(G\). That means \(\displaystyle{\mathcal L} (a_n^{-1}(\max_{1\leq i\leq n} X_i-b_n))\rightarrow G\) for some sequences \(a_n\) and \(b_n\). It is well known that \(G\) has the form \[ G_{\beta}(x)=exp(-(1+\beta x)^{1/\beta}),\quad 1+\beta x>0,\quad \beta\in {\mathbb R}. \] The paper under review studies different estimators of the so-called extreme value index \(\beta\). Naturally, the estimators must use only large observations. Hence the author considers estimators of the form \(\hat{\beta}=T(Q_n)\), where \(T\) is a functional and \(Q_n\) is the empirical tail quantile function. Almost all the usual estimators in the literature of the extreme value index are of this type. The method for studying the asymptotic behavior of such estimators is based on a theorem which deals with the Gaussian approximation of the empirical tail quantile function.
The results have different proofs if \(\beta>0\) or \(\beta\leq 0\). In section 3, the case \(\beta>0\) is considered obtaining asymptotic normality under several conditions for the distribution function \(F\), and also a differentiability hypothesis for the functional \(T\). In the case \(\beta \leq 0\) the author needs to impose a condition on the local behavior of the functional \(T\) in a neighborhood of the constant function \(1\) to obtain asymptotic normality.

MSC:

62G05 Nonparametric estimation
62G30 Order statistics; empirical distribution functions
60G70 Extreme value theory; extremal stochastic processes
60F17 Functional limit theorems; invariance principles
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Csörgő, S.; Deheuvels, P.; Mason, D., Kernel estimates of the tail index of a distribution, Ann. Statist., 13, 1050-1077 (1985) · Zbl 0588.62051
[2] Davis, R. A.; Resnick, S., Tail estimates motivated by extreme value theory, Ann. Statist., 12, 1467-1487 (1984) · Zbl 0555.62035
[3] Dekkers, A. L.M.; Einmahl, J. H.J.; de Haan, L., A moment estimator for the index of an extreme value distribution, Ann. Statist., 17, 1833-1855 (1989) · Zbl 0701.62029
[4] Dekkers, A. L.M.; de Haan, L., On the estimation of the extreme-value index and large quantile estimation, Ann. Statist., 17, 1795-1832 (1989) · Zbl 0699.62028
[5] Dekkers, A. L.M.; de Haan, L., Optimal choice of sample fraction in extreme value estimation, J. Multivariate Anal., 47, 173-195 (1993) · Zbl 0797.62016
[6] Drees, H., Refined Pickands estimators of the extreme value index, Ann. Statist., 23, 2059-2080 (1995) · Zbl 0883.62036
[7] Drees, H., On smooth statistical tail functionals (1995), Preprint, submitted
[8] Drees, H., Refined Pickands estimators with bias correction, Commun. Statist. Theory Methods, 25, 837-852 (1996) · Zbl 0875.62109
[9] Einmahl, J. H.J., Limit theorems for tail processes with application to intermediate quantile estimation, J. Statist. Planning Infer., 32, 137-145 (1992) · Zbl 0759.60017
[10] Fernholz, L. T., Von Mises Calculus for Statistical Functionals, (Lecture Notes in Statistics, vol. 19 (1983), Springer: Springer New York) · Zbl 0525.62031
[11] Galambos, J., The Asymptotic Theory of Extreme Order Statistics (1978), Wiley: Wiley New York · Zbl 0381.62039
[12] Gnedenko, B., Sur la distribution limit du terme maximum d’une série aléatoire, Ann. Math., 44, 423-453 (1943) · Zbl 0063.01643
[13] Haan, L.de, Slow variation and characterization of domains of attraction, (Tiago, de Oliveira J., Statistical Extremes and Applications (1984), Reidel Publishing: Reidel Publishing Dordrecht), 31-38
[14] Haan, L.de; Rootzén, H., On the estimation of high quantiles, J. Statist. Plann. Infer., 35, 1-13 (1993) · Zbl 0770.62026
[15] Haan, L.de; Stadtmüller, U., Generalized regular variation of second order, J. Austr. Math. Soc., 61, 381-395 (1996) · Zbl 0878.26002
[16] Haeusler, E.; Teugels, J. L., On asymptotic normality of Hill’s estimator for the exponent of regular variation, Ann. Statist., 13, 743-756 (1985) · Zbl 0606.62019
[17] Hall, P., On some simple estimates of an exponent of regular variation, J. Roy. Statist. Soc. Ser. B, 44, 37-42 (1982) · Zbl 0521.62024
[18] Hall, P.; Welsh, A. H., Best attainable rates of convergence for estimates of parameters of regular variation, Ann. Statist., 12, 1079-1084 (1984) · Zbl 0539.62048
[19] Hall, P.; Welsh, A. H., Adaptive estimates of parameters of regular variation, Ann. Statist., 13, 331-341 (1985) · Zbl 0605.62033
[20] Hill, B. M., A simple general approach to inference about the tail of a distribution, Ann. Statist., 3, 1163-1174 (1975) · Zbl 0323.62033
[21] Pickands, J., Statistical inference using extreme order statistics, Ann. Statist., 3, 119-131 (1975) · Zbl 0312.62038
[22] Reiss, R.-D., Approximate Distributions of Order Statistics, Springer Series in Statistics (1989), Springer: Springer New York · Zbl 0682.62009
[23] Smith, R. L., Estimating tails of probability distributions, Ann. Statist., 15, 1174-1207 (1987) · Zbl 0642.62022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.