×

The pluri-genera of surface singularities. (English) Zbl 0928.14023

K. Watanabe [Math. Ann. 250, 65-94 (1980; Zbl 0414.32005)] introduced the pluri-genera \(\{ \delta_m (X,x)\}_{m \in \mathbb{N}}\) of a normal isolated singularity \((X,x)\). They can be computed from a good resolution \(f:M\to X\) (i.e. a resolution whose exceptional locus \(A\) is a divisor with normal crossings) as follows: \[ \delta_m (X,x)= \dim_{\mathbb{C}} H^0 ({\mathcal O}_U(mK)) / H^0 ({\mathcal O}_M (mK+(m-1)A)) \] where \(K\) is a canonical divisor on \(M\) and \(U=X \setminus \{x\} \cong M \setminus A\). In particular, \(\delta_1 (X,x) = p_g (X,x)\).
The author studies the pluri-genera of normal surface singularities over \(\mathbb{C}\). For rational surface singularities whose dual graph for the minimal resolution is a star-shaped graph, he describes the pluri-genera in terms of some divisors on the central exceptional curve. Using this, he proves that, if for a normal surface singularity \((X,x)\) over \(\mathbb{C}\), \(\delta_m(X,x)=0\) for \(m=4,6\) then \((X,x)\) is a quotient singularity. Since K. Watanabe proved that \((X,x)\) is a quotient singularity if and only if \(\delta_m(X,x)=0\) for all \(m \in \mathbb{N}\), the preceding result characterizes the quotient singularities. Purely elliptic singularities (i.e. those for which \(\delta_m(X,x)=1\) for all \(m \in \mathbb{N}\)) are also characterized in the paper. It is proved that a normal surface singularity \((X,x)\) over \(\mathbb{C}\) is purely elliptic if and only if \(\delta_m(X,x)=1\) for \(m=1,4,6\). Applying the result of S. Ishii which assures that \((X,x)\) is purely elliptic if and only if it is a cusp or a simple elliptic singularity, the result in the paper gives a criterion to characterize these singularities. S. Ishii had also proved that \((X,x)\) is log-canonical if and only if \(\delta_m(X,x) \leq 1\) for all \(m \in \mathbb{N}\). In the paper, the author proves that if \(\delta_{14}(X,x)=0\) then \((X,x)\) is log-canonical.

MSC:

14J17 Singularities of surfaces or higher-dimensional varieties
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14B05 Singularities in algebraic geometry
32S25 Complex surface and hypersurface singularities
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. ARTIN, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496. JSTOR: · Zbl 0105.14404 · doi:10.2307/2372985
[2] M. ARTIN, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136 JSTOR: · Zbl 0142.18602 · doi:10.2307/2373050
[3] S. IsH, Du Bois singularities on a normal surface, in Complex Analytic Singularities (T. Suwa an P. Wagreich, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, pp. 153-163. · Zbl 0636.14015
[4] S. ISHII, Isolated g-Gorenstein singularities of dimension three, in Complex Analytic Singularitie (T. Suwa and P. Wagreich, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, pp. 165-198. · Zbl 0628.14002
[5] S. ISHII, Small deformation of normal singularities, Math. Ann. 275 (1986), 139-148 · Zbl 0586.14001 · doi:10.1007/BF01458588
[6] S. ISHII, TWO dimensional singularities with bounded plurigenera m are g-Gorenstein singularities, Contemporary Math. 90 (1989), 135-145. · Zbl 0692.14025
[7] U. KARRAS, On pencils of curves and deformations of minimally elliptic singularities, Math. Ann. 24 (1980), 43-65. · Zbl 0407.14014 · doi:10.1007/BF01359866
[8] M. KATO, Riemann-Rochtheorem for strongly pseudoconvex manifolds of dimension 2, Math. Ann 222 (1976), 243-250. · Zbl 0344.32020 · doi:10.1007/BF01362581
[9] H. LAUFER, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295 JSTOR: · Zbl 0384.32003 · doi:10.2307/2374025
[10] M. MORALES, Calcul de quelques invariants des singularites de surface normale, Enseign. Math. 3 (1983), 191-203. · Zbl 0542.14001
[11] T. OKUMA, A criterion for a normal surface singularity to be a quotient singularity, · Zbl 0983.14014
[12] H. PINKHAM, Normal surface singularities with C*-action, Math. Ann. 227 (1977), 183-193 Zentralblatt MATH: · Zbl 0338.14010 · doi:10.1007/BF01350195
[13] J. STEENBRINK, Mixed Hodge structure associated with isolated singularities, in Singularities (P. Orlik, ed.), Proc. Sympos, Pure Math. 40, Part 2, Amer. Math. Soc, Providence, R. I., 1983, pp. 513-536. · Zbl 0515.14003
[14] T. TOMARU, H. SAITO AND T. HIGUCHI, Pluri-genera m of normal surface singularities with C*-action, Sci. Rep. Yokohama Nat. Univ. Sect. I No. 28 (1981), 35-43. · Zbl 0587.32020
[15] K. WATANABE, On plurigenera of normal isolated singularities, I, Math. Ann. 250 (1980), 65-94 · Zbl 0414.32005 · doi:10.1007/BF02599787
[16] K. WATANABE, A revised version of ”On plurigenera of normal isolated singularities, I, Math. Ann 250 (1980), 65-94”, RIMS kokyuroku, Kyoto Univ. No. 415 (1981). · Zbl 0414.32005 · doi:10.1007/BF02599787
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.