×

Geometry and dynamics of quadratic rational maps (with an appendix by J. Milnor and Tan Lei). (English) Zbl 0922.58062

In the author’s customarily clear style he presents an exposition of various results concerning quadratic rational maps of the Riemann sphere \(\mathbb{C}\cup \infty\) to itself. The geometric aspect concerns the 5-manifold \(\text{Rat}_2\) of such maps and its subspace \(\mathcal M_2\), the “moduli space”, consisting of all holomorphic conjugacy classes of maps in \(\text{Rat}_2\). Note that \(\mathcal M_2\) is biholomorphic to \(\mathbb{C}^2\). An important part is also played by the locus \(\text{Per}_n(\mu)\) of conjugacy classes in \(\mathcal M_2\) of maps with a periodic point of period \(n\) and multiplier \(\mu\). This locus is an algebraic curve of degree equal to the number of hyperbolic components (i.e., hyperbolic on their Julia set) of period \(n\) in the Mandelbrot set, and is a line when \(n=1\) and \(n=2\). The compactification of the moduli space is also studied, as are the spaces (and moduli spaces) of quadratic maps which have a marking (for example, by ordering) of the critical or fixed points. Following the discussion of geometry and topology he turns to results, due largely to M. Rees and Tan. The author shows the difference between working in the compactified moduli space \(\widehat {\mathcal M}_2\) and working in \(\mathcal M_2\cong \mathbb{C}^2\) and then goes on to explore visually the kinds of behavior for a conjugacy class belonging to a one-dimensional slice through \(\mathcal M_2\). Appendices include background material and details of proofs. Appendix F, written by the author and Tan, describes an example of a hyperbolic map for which no two Fatou components have a common boundary point; the corresponding Julia set is a “Sierpinski carpet” (usually called “Sierpinski curve”). The references include several unpublished theses.

MSC:

37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
32S70 Other operations on complex singularities
37F99 Dynamical systems over complex numbers
PDFBibTeX XMLCite
Full Text: DOI EMIS

References:

[1] Bielefeld B., Problems in Holomorphic Dynamics pp 1–
[2] Blanchard P., Invent. Math. 104 pp 545– (1991) · Zbl 0729.58025 · doi:10.1007/BF01245090
[3] Branner B., Acta Math. 169 pp 229– (1992) · Zbl 0812.30008 · doi:10.1007/BF02392761
[4] Bousch T., Thesis, in: ”Sur quelques problémes de dynamique holomorphe” (1992)
[5] Douady A., Comptes R. Acad. Sci. Paris 294 pp 123– (1982)
[6] Douady A., Publ. Math. Orsay (1984)
[7] Douady A., Ann. Sci. Éc. Norm. Sup. (Paris) 18 pp 287– (1985)
[8] Doyle P., Acta Math. 163 pp 151– (1989) · Zbl 0705.65036 · doi:10.1007/BF02392735
[9] Goldberg L., Invent. Math. 101 pp 335– (1990) · Zbl 0715.58018 · doi:10.1007/BF01231505
[10] Haeseler F. V., Acta Appl. Math. 13 pp 3– (1988) · Zbl 0671.30023 · doi:10.1007/BF00047501
[11] Hardy G. H., An Introduction to the Theory of Numbers,, 5. ed. (1979) · Zbl 0423.10001
[12] Lavaurs P, Thesis, in: ”Systèmes dynamiques holomorphes: Explosion de points périodiques paraboliques” (1989)
[13] Lyubich M., Funk. Anal, i Pril. 42 pp 72– (1984)
[14] Makienko, P. [Makienko], in preparation
[15] Mandelbrot B., The Fractal Geometry of Nature (1982) · Zbl 0504.28001
[16] McMullen C., Holomorphic Functions and Moduli 1 pp 31– (1988) · doi:10.1007/978-1-4613-9602-4_3
[17] Milnor J., ”On cubic polynomials with periodic critical point” · Zbl 1180.37073
[18] Milnor J., Knots, Groups, and 3-Manifolds pp 175– (1975)
[19] Milnor J., Dynamics in One Complex Variable: Introductory Lectures (1990) · Zbl 0946.30013
[20] Milnor J., Experimental Math. 1 pp 5– (1992)
[21] Milnor J., ”Hyperbolic components in spaces of polynomial maps” (1992)
[22] Mane R., Ann. Sci. Éc. Norm. Sup. (Paris) 16 pp 193– (1983)
[23] Petersen C., ”A remark on Tan Lei’s mating conjecture” (1993)
[24] Przytycki F., ”Polynomials in the hyperbolic components” · Zbl 0852.58052
[25] Przytycki F., Dynamical Systems and Ergodic Theory pp 229– (1989)
[26] Rees M., Ann. Sci. Éc. Norm. Sup. (Paris) 19 pp 383– (1986)
[27] Rees M., Invent. Math. 100 pp 357– (1990) · Zbl 0712.30022 · doi:10.1007/BF01231191
[28] Rees, M. ”Combinatorial models illustrating variation of dynamics in families of rational maps”. Proc. Int. Congr. Math. Kyoto 1990. Edited by: Satake, I. Tokyo: Springer-Verlag. [Rees 1990b]
[29] Rees M., I: Acta Math. 168 pp 11– (1992) · Zbl 0774.58035 · doi:10.1007/BF02392976
[30] Segal G., Acta Math. 143 pp 39– (1979) · Zbl 0427.55006 · doi:10.1007/BF02392088
[31] Shishikura M., Ann. Sci. Éc. Norm. Sup. (Paris) 20 pp 1– (1987)
[32] Shishikura M., ”On a theorem of M. Rees for the matings of polynomials” (1990) · Zbl 1062.37039
[33] Stimson J., Thesis, in: ”Degree Two Rational Maps with a Periodic Critical Point” (1993)
[34] Sullivan D., Ann. Math. 122 pp 401– (1985) · Zbl 0589.30022 · doi:10.2307/1971308
[35] Lei Tan, Thesis, in: ”Accouplements des polynômes complexes” (1987)
[36] Thurston W. P., Three-Dimensional Geometry and Topology 2 · Zbl 0873.57001
[37] van der Waerden B. L., Modern Algebra, 1, 7. ed. (1991) · Zbl 0724.12001
[38] Whyburn G. T., Fundamenta Math. 45 pp 320– (1958)
[39] Wittner B., Thesis, in: ”On the bifurcation loci of rational maps of degree two” (1988)
[40] Yongcheng Yin, Complex Variables 18 pp 141– (1992) · Zbl 0765.30013 · doi:10.1080/17476939208814540
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.