×

\(p\)-adic Banach spaces and families of modular forms. (English) Zbl 0918.11026

In part A, the author shows how Serre’s \(p\)-adic Banach-Fredholm-Riesz theory may be extended over complete, normed rings. He applies these results to elliptic modular forms. He proves that the Fredholm determinants of the \(U\)-operator acting on (integer) weight \(k\) overconvergent modular forms are specializations of a Fredholm determinant of a completely continuous operator over the Banach algebra of rigid analytic functions on any sufficiently large closed disc in the weight space (theorem B). One consequence is a qualitative version of the Gouvêa-Mazur \(R\)-family conjecture (conjecture 3 of the article [F. Gouvêa and B. Mazur, Math. Comput. 58, 793-805 (1992; Zbl 0773.11030)]; section B.5).

MSC:

11F33 Congruences for modular and \(p\)-adic modular forms
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis

Citations:

Zbl 0773.11030
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adolphson, A., The U_p operator of Atkin on modular forms of level three, Illinois Journal of Math., 24, 49-60 (1980) · Zbl 0431.14006
[2] Bergman, G.: A weak nullstellensatz for valuations, Proc. of the AMS 28, No. 1, 32-38 (71) · Zbl 0193.00303
[3] Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedian Analysis, Springer-Verlag, (1984) · Zbl 0539.14017
[4] Coleman, R., A p-adic Shimura isomorphism and p-adic periods of modular forms, Contemporary Mathematics, 165, 21-51 (1994) · Zbl 0838.11033
[5] Coleman, R., Classical and overconvergent modular forms, Invent, math., 124, 215-241 (1996) · Zbl 0851.11030
[6] Coleman, R.: Classical and overconvergent modular forms of higher level (to appear) · Zbl 0942.11025
[7] Coleman, R.: On the characteristic power series of the U-operator (to appear) · Zbl 0902.11019
[8] Coleman, R., Edixhoven, B.: The semi-simplicity of the U_p-operator on elliptic modular forms (to appear) · Zbl 0902.11020
[9] Dwork, B., On Hecke polynomials, Invent. Math., 12, 249-256 (1971) · Zbl 0219.14014
[10] Dwork, B., The U_p operator of Atkin on modular forms of level 2 with growth conditions, SLN, 350, 57-67 (1972) · Zbl 0276.14010
[11] Fresnel, J.; van der Put, M., Géométrie Analytique Rigide et Applications (1981), Boston: Birkhäuser, Boston · Zbl 0479.14015
[12] Gouvêa, F.: Arithmetic of p-adic modular forms, SLN 1304, (1988) · Zbl 0641.10024
[13] Gouvêa, F.: Continuity Properties of Modular Forms · Zbl 0829.11026
[14] Gouvêa, F.; Mazur, B., Families of Modular Eigenforms, Mathematics of Computation, 58, 793-805 (1992) · Zbl 0773.11030
[15] Gouvêa, F., On the characteristic power series of the U-operator, Annales de l’institut Fourier, 43, 2, 301-312 (1993) · Zbl 0779.11022
[16] Hatada, Eigenvalues of Hecke Operators on SL(2,Z), Math. Ann., 239, 75-96 (1979) · Zbl 0377.10016
[17] Hida, H., Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Ec. Norm. Sup., 19, 231-273 (1986) · Zbl 0607.10022
[18] Hida, H., Galois representations into GL_2(Z_p[[X]]) attached to ordinary cusp forms, Invent. Math., 85, 545-613 (1986) · Zbl 0612.10021
[19] Hida, H.: Elementary theory of L-functions and Eisenstein series, London Mathematical Society (1993) · Zbl 0942.11024
[20] Hida, H.: Nearly Ordinary Hecke Algebras and Galois Representations of Several Variables, JAMI Innaugural Conference Proceedings, (supplement to) Amer. 3 J. Math. 115-134 (1990)
[21] Hijikata, Explicit formula of the traces of Hecke operators for Γ_0(N), J. Math. Soc. of Japan, 26, 56-82 (1974) · Zbl 0266.12009
[22] Ihara, Y.: Hecke polynomials as congruence φ functions in the elliptic modular case, Ann. of Math. 267-295 (1967) · Zbl 0181.36501
[23] Katz, N., P-adic properties of modular schemes and modular forms, Modular Functions of one Variable III, SLN, 350, 69-190 (1972) · Zbl 0271.10033
[24] Katz, N., P-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104, 459-571 (1976) · Zbl 0354.14007
[25] Katz, N., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Annals of Math. Stud. 108, PUP (1985) · Zbl 0576.14026
[26] Koike, M: J. Fac. Sci. Univ. Tokyo 20 (1973), On p-adic properties of the Eichier-Selberg trace formula, Nagoya Math. J. 56, (1975)
[27] Koike, M., On p-adic properties of the Eichier-Selberg trace formula II Nagoya, Math. J., 64, 87-96 (1976) · Zbl 0344.10013
[28] Lang, S.: Algebra, Addison-Wesley (1993) · Zbl 0848.13001
[29] Lang, S.: Cyclotomic Fields, Springer-Verlag (1978) · Zbl 0395.12005
[30] Li, W., Newforms and functional equations, Math. Ann., 212, 285-315 (1975) · Zbl 0278.10026
[31] Mazur, B.; Wiles, A., Analogies between Function fields and number fields, Amer. J. Math., 105, 507-521 (1983) · Zbl 0531.12015
[32] Morita, Y., Hecke polynomials of modular groups and congruence zeta functions of fiber varieties, J. Math. Soc. Japan, 21, 6127-6637 (1969) · Zbl 0212.25705
[33] Miyake, T.: Modular Forms, Springer (1989) · Zbl 0701.11014
[34] Serre, J-P., Endomorphismes complètements continues des espaces de Banach p-adiques, Publ. Math. I.H.E.S., 12, 69-85 (1962) · Zbl 0104.33601
[35] Serre, J.-P., Formes modulaires et fonetiones zêta p-adiques, Modular Functions of one Variable III, SLN, 350, 69-190 (1972)
[36] Shimura, G.: Introduction to the arithmetic theory of automorphic functions 11, Publ. Math. Soc. Japan, Princ. Univ. Press (1971) · Zbl 0221.10029
[37] Swinnerton-Dyer, H. P.F., On l-adic representations and congruences of modular forms, Modular Functions of one Variable III, SLN, 350, 1-55 (1972) · Zbl 0267.10032
[38] Tate, J., Rigid analytic spaces, Invent. Math., 12, 257-289 (1971) · Zbl 0212.25601
[39] Washington, L.: Introduction to Cyclotomic Fields, Springer-Verlag (1980) · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.