×

Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions. (English) Zbl 0915.35069

Solutions of conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, difference schemes, called generalized monotone schemes. Convergence toward the entropy solution is proven via a new technique of proof, assuming that the initial data has a finite number of extrema only, and the flux-function is strictly convex. We define discrete paths of extrema by tracking local extremum values in the approximate solution. In the course of the analysis we establish the pointwise convergence of the trace of the solution along a path of extremum. As a corollary, we obtain a proof of convergence for a MUSCL-type scheme that is second order accurate away from sonic points and extrema.
Reviewer: M.Meister

MSC:

35L65 Hyperbolic conservation laws
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. Bouchut, Ch. Bourdarias, and B. Perthame, A MUSCL method satisfying all the numerical entropy inequalities, Math. Comp. 65 (1996), no. 216, 1439 – 1461. · Zbl 0853.65091
[2] Yann Brenier and Stanley Osher, The discrete one-sided Lipschitz condition for convex scalar conservation laws, SIAM J. Numer. Anal. 25 (1988), no. 1, 8 – 23. · Zbl 0637.65090
[3] Edward Conway and Joel Smoller, Clobal solutions of the Cauchy problem for quasi-linear first-order equations in several space variables, Comm. Pure Appl. Math. 19 (1966), 95 – 105. · Zbl 0138.34701
[4] Frédéric Coquel and Philippe G. LeFloch, An entropy satisfying MUSCL scheme for systems of conservation laws, Numer. Math. 74 (1996), no. 1, 1 – 33. · Zbl 0860.65076
[5] Phillip Colella, A direct Eulerian MUSCL scheme for gas dynamics, SIAM J. Sci. Statist. Comput. 6 (1985), no. 1, 104 – 117. · Zbl 0562.76072
[6] Michael G. Crandall and Andrew Majda, Monotone difference approximations for scalar conservation laws, Math. Comp. 34 (1980), no. 149, 1 – 21. · Zbl 0423.65052
[7] C. M. Dafermos, Characteristics in hyperbolic conservation laws. A study of the structure and the asymptotic behaviour of solutions, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Vol. I, Pitman, London, 1977, pp. 1 – 58. Res. Notes in Math., No. 17.
[8] Björn Engquist and Stanley Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp. 36 (1981), no. 154, 321 – 351. · Zbl 0469.65067
[9] A. F. Filippov, Differential equations with discontinuous right-hand side, Mat. Sb. (N.S.) 51 (93) (1960), 99 – 128 (Russian). · Zbl 0138.32204
[10] James Glimm and Peter D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws, Memoirs of the American Mathematical Society, No. 101, American Mathematical Society, Providence, R.I., 1970. · Zbl 0204.11304
[11] E. Godlewski and P.-A. Raviart, Hyperbolic Systems of Conservation Laws, Math. & Appl., no. 3/4, Ellipses, Paris, 1991. · Zbl 0768.35059
[12] Jonathan B. Goodman and Randall J. LeVeque, A geometric approach to high resolution TVD schemes, SIAM J. Numer. Anal. 25 (1988), no. 2, 268 – 284. · Zbl 0645.65051
[13] Ami Harten, On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. Numer. Anal. 21 (1984), no. 1, 1 – 23. With an appendix by Peter D. Lax. · Zbl 0547.65062
[14] Ami Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983), no. 3, 357 – 393. · Zbl 0565.65050
[15] Y. Cherruault, Sur la convergence de la méthode d’Adomian, RAIRO Rech. Opér. 22 (1988), no. 3, 291 – 299 (French, with English summary). · Zbl 0647.90081
[16] A. Harten, J. M. Hyman, and P. D. Lax, On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math. 29 (1976), no. 3, 297 – 322. With an appendix by B. Keyfitz. · Zbl 0351.76070
[17] Guang Shan Jiang and Chi-Wang Shu, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comp. 62 (1994), no. 206, 531 – 538. · Zbl 0801.65098
[18] Barbara Keyfitz Quinn, Solutions with shocks: An example of an \?\(_{1}\)-contractive semigroup, Comm. Pure Appl. Math. 24 (1971), 125 – 132. · Zbl 0206.10401
[19] S. N. Kružkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.) 81 (123) (1970), 228 – 255 (Russian).
[20] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537 – 566. · Zbl 0081.08803
[21] Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. · Zbl 0268.35062
[22] Peter Lax and Burton Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960), 217 – 237. · Zbl 0152.44802
[23] B. van Leer, Towards the ultimate conservative difference scheme, II, Monotonicity and conservation combined in a second order scheme, J. Comp. Phys. 14 (1974), 361-370. · Zbl 0276.65055
[24] B. van Leer, Towards the ultimate conservative difference scheme, V, A second order sequel to Godunov’s method, J. Comp. Phys. 32 (1979), 101-136. · Zbl 1364.65223
[25] Philippe G. LeFloch and Jian-Guo Liu, Discrete entropy and monotonicity criteria for hyperbolic conservation laws, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 8, 881 – 886 (English, with English and French summaries). · Zbl 0810.65087
[26] A.Y. Leroux, Approximation de quelques problèmes hyperboliques non linéaires, Thèse d’état, Université de Rennes (1979).
[27] Pierre-Louis Lions and Panagiotis Souganidis, Convergence of MUSCL type methods for scalar conservation laws, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 5, 259 – 264 (English, with French summary). · Zbl 0712.65082
[28] P.-L. Lions and P. Souganidis, Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations, Numer. Math. 69 (1995), 441-470. · Zbl 0834.65087
[29] Haim Nessyahu and Eitan Tadmor, The convergence rate of approximate solutions for nonlinear scalar conservation laws, SIAM J. Numer. Anal. 29 (1992), no. 6, 1505 – 1519. · Zbl 0765.65092
[30] Haim Nessyahu, Eitan Tadmor, and Tamir Tassa, The convergence rate of Godunov type schemes, SIAM J. Numer. Anal. 31 (1994), no. 1, 1 – 16. · Zbl 0799.65096
[31] Stanley Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal. 21 (1984), no. 2, 217 – 235. · Zbl 0592.65069
[32] Stanley Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22 (1985), no. 5, 947 – 961. · Zbl 0627.35061
[33] Stanley Osher and Eitan Tadmor, On the convergence of difference approximations to scalar conservation laws, Math. Comp. 50 (1988), no. 181, 19 – 51. · Zbl 0637.65091
[34] Chi-Wang Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), no. 6, 1073 – 1084. · Zbl 0662.65081
[35] Eitan Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp. 43 (1984), no. 168, 369 – 381. · Zbl 0587.65058
[36] Eitan Tadmor, Convenient total variation diminishing conditions for nonlinear difference schemes, SIAM J. Numer. Anal. 25 (1988), no. 5, 1002 – 1014. · Zbl 0662.65082
[37] A. I. Vol\(^{\prime}\)pert, Spaces \?\? and quasilinear equations, Mat. Sb. (N.S.) 73 (115) (1967), 255 – 302 (Russian).
[38] Huanan Yang, On wavewise entropy inequalities for high-resolution schemes. I. The semidiscrete case, Math. Comp. 65 (1996), no. 213, 45 – 67, S1 – S13. · Zbl 0848.65063
[39] H. Yang, On wavewise entropy inequalities for high-resolution schemes II : fully-discrete MUSCL schemes with exact evolution in small time, SIAM J. Numer. Anal., to appear. · Zbl 0923.65055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.