×

Scaling variables and asymptotic expansions in damped wave equations. (English) Zbl 0913.35086

Let \(\varepsilon \) be a positive not necessarily small parameter, \(a(x)\) be a diffusion coefficient converging to positive limits as \(x\to \pm \infty \), and let the Lipschitz continuous nonlinearity \(N(u,u_x,u_t)\) vanish sufficiently fast as \(u\to 0\). The long time behaviour of small solutions to the nonlinear damped wave equation \(\varepsilon u_{tt}+u_t=(a(x)u_x)_x+ N(u,u_x,u_t)\), \(x\in \mathbb{R}\), \(t\geq 0\), is studied by use of scaling variables, energy estimates and an asymptotic expansion of \(u\) in the powers of \(t^{-1/2}\).

MSC:

35L70 Second-order nonlinear hyperbolic equations
35C20 Asymptotic expansions of solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35K55 Nonlinear parabolic equations

Keywords:

Cauchy problem
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Babin, A. V.; Vishik, M. I., Attractors of Evolutionary Equations (1989), North-Holland: North-Holland Amsterdam · Zbl 0804.58003
[2] Ball, J. M., Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc., 63, 370-373 (1977) · Zbl 0353.47017
[3] Bricmont, J.; Kupiainen, A., Universality in blow-up for non linear heat equations, Nonlinearity, 7, 539-575 (1994) · Zbl 0857.35018
[4] Bricmont, J.; Kupiainen, A., Stable non-Gaussian diffusive profiles, Nonlinear Anal., 26, 583-593 (1996) · Zbl 0841.35045
[5] Bricmont, J.; Kupiainen, A.; Lin, G., Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math., 47, 893-922 (1994) · Zbl 0806.35067
[6] Cazenave, Th.; Haraux, A., Introduction aux Problèmes d’Evolution Semi-linéaires. Introduction aux Problèmes d’Evolution Semi-linéaires, Mathématiques et Applications, 1 (1990), Ellipses · Zbl 0786.35070
[7] Crow, J. F.; Kimura, M., An Introduction to Population Genetics Theory (1969), Harper & Row: Harper & Row New York
[8] Dunbar, S. R.; Othmer, H. G., On a nonlinear hyperbolic equation describing transmission lines, cell movement, and branching random walks, Nonlinear Oscillations in Biology and Chemistry. Nonlinear Oscillations in Biology and Chemistry, Lecture Notes in Biomathematics, 66 (1986), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0592.92003
[9] Escobedo, M.; Kavian, O.; Matano, H., Large time behavior of solutions of a dissipative semi-linear heat equation, Comm. Partial Differential Equations, 20, 1427-1452 (1995) · Zbl 0838.35015
[10] Eckmann, J.-P.; Wayne, C. E.; Wittwer, P., Geometric stability analysis for periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys., 190, 173-211 (1997) · Zbl 0912.35140
[11] Escobedo, M.; Zuazua, E., Large-time behavior for convection diffusion equations in \(\textbf{R}^N \), J. Funct. Anal., 100, 119-161 (1991) · Zbl 0762.35011
[12] Fulks, W.; Guenther, B., Damped wave equations and the heat equation, Czechoslovak Math. J., 21, 683-695 (1971) · Zbl 0237.35040
[13] Galaktionov, V. A.; Kudyumov, S. P.; Samarskii, A. A., On asymptotic eigenfunctions of the Cauchy problem for a nonlinear parabolic equation, Math. USSR-Sb., 54, 421-455 (1986) · Zbl 0607.35049
[14] Galaktionov, V. A.; Vazquez, J. L., Asymptotic behaviour of nonlinear parabolic equations with critical exponents: A dynamical system approach, J. Funct. Anal., 100, 435-462 (1991) · Zbl 0755.35010
[15] Gallay, Th.; Raugel, G., Stability of travelling waves for a damped hyperbolic equation, Z. Angew. Math. Phys., 48, 451-479 (1997) · Zbl 0877.35021
[16] Th. Gallay, G. Raugel, Scaling variables and stability of hyperbolic fronts; Th. Gallay, G. Raugel, Scaling variables and stability of hyperbolic fronts · Zbl 0801.35046
[17] Giga, Y.; Kohn, R. V., Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36, 1-40 (1987) · Zbl 0601.35052
[18] Goldstein, S., On diffusion by discontinuous movements and the telegraph equation, Quart. J. Mech. Appl. Math., 4, 129-156 (1951) · Zbl 0045.08102
[19] Hadeler, K. P., Reaction telegraph equations and random walk systems, (van Strien, S.; Verduyn Lunel, S., Stochastic and Spatial Structures of Dynamical Systems (1996), North HollandRoyal Academy of the Netherlands: North HollandRoyal Academy of the Netherlands Amsterdam) · Zbl 0816.35083
[20] Hale, J. K.; Raugel, G., Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73, 197-214 (1988) · Zbl 0666.35012
[21] Hale, J. K.; Raugel, G., Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dynamics Differential Equations, 2, 19-67 (1990) · Zbl 0752.35034
[22] Hale, J. K.; Raugel, G., A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329, 185-219 (1992) · Zbl 0761.35052
[23] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1934), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · JFM 60.0169.01
[24] Herrero, M. A.; Velazquez, J. J.L., Blow-up profiles in one-dimensional, semilinear parabolic equations, Comm. Partial Differential Equations, 17, 205-219 (1992) · Zbl 0772.35027
[25] Herrero, M. A.; Velazquez, J. J.L., Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré, 10, 131-189 (1993) · Zbl 0813.35007
[26] Hsiao, L.; Liu, T., Convergence to nonlinear diffusion waves for solution of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143, 599-605 (1992) · Zbl 0763.35058
[27] Hsiao, L.; Liu, T., Nonlinear diffusive phenomena of nonlinear hyperbolic systems, Chinese Ann. Math. Ser. B, 14, 465-480 (1993) · Zbl 0804.35072
[28] Kac, M., A stochastic model related to the telegrapher’s equation, Rocky Mountain J. Math., 4, 497-509 (1974) · Zbl 0314.60052
[29] Kavian, O., Remarks on the large time behavior of a nonlinear diffusion equation, Ann. Inst. H. Poincaré, 4, 423-452 (1987) · Zbl 0653.35036
[30] Lachenmann, S. G.; Filatrella, G.; Doderer, T.; Fernandez, J. C.; Huebener, R. P., Soliton dynamics in two-dimensional Josephson tunnel junctions, Phys. Rev. B, 48, 16,623-16,629 (1993)
[31] Laub, A.; Doderer, T.; Lachenmann, S. G.; Huebener, R. P., Lorentz contraction of flux quanta observed in experiments with annular Josephson tunnel junctions, Phys. Rev. Lett., 75, 1372-1375 (1995)
[32] Merle, F.; Zaag, H., Optimal estimates for blow-up rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51, 139-196 (1998) · Zbl 0926.35024
[33] Mora, X.; Solà-Morales, J., The singular limit of semilinear damped equations, J. Differential Equations, 78, 262-307 (1989) · Zbl 0699.35177
[34] Murray, J. D., Mathematical Biology. Mathematical Biology, Biomathematics, 19 (1993), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0779.92001
[35] Nishihara, K., Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differential Equations, 131, 171-188 (1996) · Zbl 0866.35066
[36] Nishihara, K., Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping, J. Differential Equations, 137, 384-395 (1997) · Zbl 0881.35076
[37] Okubo, A., Diffusion and Ecological Problems: Mathematical Models. Diffusion and Ecological Problems: Mathematical Models, Biomathematics, 10 (1980), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0422.92025
[38] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44 (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[39] Raugel, G., Dynamics of partial differential equations on thin domains, (Johnson, R., Dynamical Systems. Dynamical Systems, Lecture Notes in Mathematics, 1609 (1995), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0785.35050
[40] Schneider, G., Diffusive stability of spatial periodic solutions of the Swift- Hohenberg equation, Comm. Math. Phys., 178, 679-702 (1996) · Zbl 0861.35107
[41] Taylor, G. I., Diffusion by continuous movements, Proc. London Math. Soc., 20, 196-212 (1920) · JFM 48.0961.01
[42] Wayne, C. E., Invariant manifolds for parabolic partial differential equations in unbounded domains, Arch. Rational Mech. Anal., 138, 279-306 (1997) · Zbl 0882.35061
[43] Yanagida, E., Existence of stable stationary solutions of scalar reaction diffusion equations in thin tubular domains, Appl. Anal., 36, 171-188 (1990) · Zbl 0709.35044
[44] Zauderer, E., Partial Differential Equations of Applied Mathematics (1983), Wiley: Wiley New York · Zbl 0551.35002
[45] Zlámal, M., Sur l’équation des télégraphistes avec un petit paramètre, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 27, 324-332 (1959) · Zbl 0108.28304
[46] Zlámal, M., The mixed problem for hyperbolic equations with a small parameter, Czechoslovak Math. J., 10, 83-122 (1960) · Zbl 0089.07305
[47] Zlámal, M., The parabolic equations as a limiting case of hyperbolic and elliptic equations, Differential Equations and Their Applications, Proc. Conf., Prague (1963), Academic Press: Academic Press New York · Zbl 0161.30303
[48] Zuazua, E., A dynamical system approach to the self-similar large time behavior in scalar convection-diffusion equations, J. Differential Equations, 108, 1-35 (1994) · Zbl 0802.35074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.