×

Remote Agent: to boldly go where no AI system has gone before. (English) Zbl 0909.68167

Summary: Renewed motives for space exploration have inspired NASA to work toward the goal of establishing a virtual presence in space, through heterogeneous fleets of robotic explorers. Information technology, and Artificial Intelligence in particular, will play a central role in this endeavor by endowing these explorers with a form of computational intelligence that we call remote agents. In this paper we describe the Remote Agent, a specific autonomous agent architecture based on the principles of model-based programming, on-board deduction and search, and goal-directed closed-loop commanding, that takes a significant step toward enabling this future. This architecture addresses the unique characteristics of the spacecraft domain that require highly reliable autonomous operations over long periods of time with tight deadlines, resource constraints, and concurrent activity among tightly coupled subsystems. The Remote Agent integrates constraint-based temporal planning and scheduling, robust multi-threaded execution, and model-based mode identification and reconfiguration. The demonstration of the integrated system as an on-board controller for Deep Space One, NASA’s first New Millennium mission, is scheduled for a period of a week in mid 1999. The development of the Remote Agent also provided the opportunity to reassess some of AI’s conventional wisdom about the challenges of implementing embedded systems, tractable reasoning, and knowledge representation. We discuss these issues, and our often contrary experiences, throughout the paper.

MSC:

68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
68T01 General topics in artificial intelligence

Software:

Graphplan; GOLOG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agre, P. E.; Chapman, D., Pengi: an implementation of a theory of activity, (Proc. AAAI-87. Proc. AAAI-87, Seattle, WA (1987)), 268-272
[2] Aljabri, A. S.; Bernard, D. E.; Dvorak, D. L.; Man, G. K.; Pell, B.; Starbird, T. W., Infusion of autonomy technology into space missions—DS1 lessons learned, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[3] Allen, J. F., Maintaining knowledge about temporal intervals, Communications of the ACM, 26, 11, 832-843 (1983) · Zbl 0519.68079
[4] Bell, D.; Bobrow, D.; Falkenhainer, B.; Fromherz, M.; Saraswat, V.; Shirley, M., Rapper: the copier modeling project, (Working Papers of the 8th International Workshop on Qualitative Reasoning about Physical Systems (1994))
[5] Bernard, D. E.; Dorais, G. A.; Fry, C.; Gamble, E. B.; Kanefsky, B.; Kurien, J.; Millar, W.; Muscettola, N.; Nayak, P. P.; Pell, B.; Rajan, K.; Rouquette, N.; Smith, B.; Williams, B. C., Design of the remote agent experiment for spacecraft autonomy, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[6] Blum, A. L.; Furst, M. L., Fast planning through planning graph analysis, Artificial Intelligence, 90, 281-300 (1997) · Zbl 1017.68533
[7] Boddy, M.; Dean, T. L., Deliberation scheduling for problem solving in time-constrained environments, Artificial Intelligence, 67, 245-285 (1994) · Zbl 0809.68103
[8] Bonasso, R. P.; Kortenkamp, D.; Whitney, T., Using a robot control architecture to automate space shuttle operations, (Proc. AAAI-97. Proc. AAAI-97, Providence, RI (1997), AAAI Press: AAAI Press Cambridge, MA), 949-956
[9] Brooks, R. A., Intelligence without representation, Artificial Intelligence, 47, 139-159 (1991)
[10] Brown, G. M.; Bernard, D. E.; Rasmussen, R. D., Attitude and articulation control for the Cassini spacecraft: a fault tolerance overview, (14th AIAA/IEEE Digital Avionics Systems Conference. 14th AIAA/IEEE Digital Avionics Systems Conference, Cambridge, MA (November 1995))
[11] Chapman, D., Planning for conjunctive goals, Artificial Intelligence, 32, 3, 333-377 (1987) · Zbl 0642.68171
[12] Cheeseman, P.; Kanefsky, B.; Taylor, W., Where the really hard problems are, (Proc. IJCAI-91. Proc. IJCAI-91, Sydney, Australia (1991)), 163-169 · Zbl 0747.68064
[13] Chien, S. A.; Mortensen, H. B., Automating image processing for scientific data analysis of a large image database, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 8, 854-859 (1996)
[14] Cook, R., Mars Pathfinder mission operations: faster, better, cheaper on Mars, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[15] Currie, K.; Tate, A., O-plan: the open planning architecture, Artificial Intelligence, 52, 1, 49-86 (1991)
[16] Dallas, S. S., Space interferometry mission, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[17] Davis, R., Diagnostic reasoning based on structure and behavior, Artificial Intelligence, 24, 347-410 (1984)
[18] de Kleer, J., Choices without backtracking, (Proc. AAAI-84. Proc. AAAI-84, Austin, TX (1984)), 79-85
[19] de Kleer, J., Exploiting locality in a TMS, (Proc. AAAI-90. Proc. AAAI-90, Boston, MA (1990)), 264-271
[20] de Kleer, J., Focusing on probable diagnoses, (Proc. AAAI-91. Proc. AAAI-91, Anaheim, CA (1991)). (Hamscher, W.; Console, L.; de Kleer, J., Readings in Model-Based Diagnosis (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 842-848, Reprinted in:
[21] de Kleer, J.; Mackworth, A.; Reiter, R., Characterizing diagnoses and systems, Artificial Intelligence. (Hamscher, W.; Console, L.; de Kleer, J., Readings in Model-Based Diagnosis (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 56, 197-222 (1992), Reprinted in: · Zbl 0772.68085
[22] de Kleer, J.; Williams, B. C., Reasoning about multiple faults, (Proc. AAAI-86. Proc. AAAI-86, Philadelphia, PA (1986)), 132-139
[23] de Kleer, J.; Williams, B. C., Diagnosing multiple faults, Artificial Intelligence. (Hamscher, W.; Console, L.; de Kleer, J., Readings in Model-Based Diagnosis (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 32, 97-130 (1987), Reprinted in: · Zbl 0642.94045
[24] de Kleer, J.; Williams, B. C., Diagnosis with behavioral modes, (Proc. IJCAI-89. Proc. IJCAI-89, Detroit, MI (1989)). (Hamscher, W.; Console, L.; de Kleer, J., Readings in Model-Based Diagnosis (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 1324-1330, Reprinted in: · Zbl 0718.68081
[25] (de Kleer, J.; Williams, B. C., Qualitative Reasoning about Physical Systems II. Qualitative Reasoning about Physical Systems II, Artificial Intelligence, 51 (1991)), (Special Issue)
[26] Dean, T. L.; McDermott, D. V., Temporal data base management, Artificial Intelligence, 32, 1-55 (1987)
[27] Dechter, R.; Meiri, I.; Pearl, J., Temporal constraint networks, Artificial Intelligence, 49, 61-95 (1991) · Zbl 0737.68070
[28] Doyle, J., A truth maintenance system, Artificial Intelligence, 12, 231-272 (1979)
[29] Dressler, O.; Farquhar, A., Putting the problem solver back in the driver’s seat: contextual control of the ATMS, (Lecture Notes in Artificial Intelligence, Vol. 515 (1990), Springer: Springer Berlin)
[30] Dressler, O.; Struss, P., Model-based diagnosis with the default-based diagnosis engine: effective control strategies that work in practice, (Proc. ECAI-94 (1994))
[31] Estlin, T. A.; Chien, S. A.; Wang, Xuemei, An argument for a hybrid HTN/operator-based approach to planning, (Proc. 4th European Conference on Planning (1997))
[32] Fikes, R.; Nilsson, N., STRIPS: a new approach to the application of theorem proving to problem solving, Artificial Intelligence, 2, 3/4, 189-208 (1971) · Zbl 0234.68036
[33] Firby, R. J., Adaptive execution in complex dynamic worlds, (Ph.D. Thesis (1978), Yale University)
[34] Forbus, K. D.; de Kleer, J., Focusing the ATMS, (Proc. AAAI-88. Proc. AAAI-88, St. Paul, MN (1988)), 193-198
[35] Gat, E., ESL: a language for supporting robust plan execution in embedded autonomous agents, (Pryor, L., Proc. AAAI Fall Symposium on Plan Execution (1996), AAAI Press)
[36] Gat, E.; Pell, B., Abstract resource management in an unconstrained plan execution system, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[37] Georgeff, M. P.; Lansky, A. L., Procedural knowledge, (Technical Report 411 (January 1987), Artificial Intelligence Center, SRI International)
[38] (Hamscher, W.; Console, L.; de Kleer, J., Readings in Model-Based Diagnosis (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA)
[39] Hamscher, W. C., Modeling digital circuits for troubleshooting, Artificial Intelligence, 51, 223-271 (1991)
[40] Hubbard, G. S., Lunar prospector: developing a very low cost planetary mission, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[41] IEEE, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[42] Kautz, H.; Selman, B., Pushing the envelope: planning, propositional logic, and stochastic search, (Proc. AAAI-96. Proc. AAAI-96, Portland, OR (1996)), 1194-1201
[43] Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; Scherl, R., Golog: a logic programming language for dynamic domains, Journal of Logic Programming, 31, 59-84 (1997) · Zbl 0880.68008
[44] Manna, Z.; Pnueli, A., The Temporal Logic of Reactive and Concurrent Systems: Specification (1992), Springer: Springer Berlin
[45] McAllester, D., An outlook on truth maintenance, (Memo, 551 (August 1980), MIT Artificial Intelligence Laboratory)
[46] McDermott, D., A reactive plan language, (Technical report (1993), Computer Science Department, Yale University)
[47] McKay, D. S.; Gibson, E. K.; Thomas-Keprta, K. L.; Vali, H.; Romanek, C. S.; Clemett, S. J.; Chillier, X. D.F.; Maechling, C. R.; Zare, R. N., Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001, Science, 273, 924-930 (1996)
[48] Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.; Wilcox, B. H., Experiences with operations and autonomy of the Mars Pathfinder microrover, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[49] Montemerlo, M., The AI program at NASA: lessons learned in the first seven years, AI Magazine, 13 (1992)
[50] Muller, J.; Pischel, M., An architecture for dynamically interacting agents, Int. Journal of Intelligent and Cooperative Information Systems, 3, 1, 25-45 (1994)
[51] Muscettola, N., HSTS: integrating planning and scheduling, (Fox, M.; Zweben, M., Intelligent Scheduling (1994), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA)
[52] Muscettola, N.; Smith, B.; Chien, C.; Fry, C.; Rabideau, G.; Rajan, K.; Yan, D., On-board planning for autonomous spacecraft, (Proc. 4th International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS). Proc. 4th International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS), Tokyo, Japan (August 1997))
[53] Muscettola, N.; Morris, P.; Pell, B.; Smith, B., Issues in temporal reasoning for autonomous control systems, (Wooldridge, M., Proc. 2nd International Conference on Autonomous Agents (1998), ACM Press: ACM Press New York)
[54] Muscettola, N.; Morris, P.; Tsamardinos, I., Reformulating temporal plans for efficient execution, (Proc. 6th Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR-98) (1998))
[55] Musliner, D.; Durfee, E.; Shin, Kang, Circa: a cooperative, intelligent, real-time control architecture, IEEE Transactions on Systems, Man, and Cybernetics, 23, 6 (1993)
[56] Nayak, P. P.; Williams, B. C., Fast context switching in real-time propositional reasoning, (Proc. AAAI-97. Proc. AAAI-97, Providence, RI (1997))
[57] Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.; Muscettola, N.; Nayak, P. P.; Wagner, M. D.; Williams, B. C., An autonomous spacecraft agent prototype, Autonomous Robots, 5, 1 (1998)
[58] Pell, B.; Dorais, G. A.; Plaunt, C.; Washington, R., The remote agent executive: capabilities to support integrated robotic agents, (Schultz, A.; Kortenkamp, D., Proc. AAAI Spring Symp. on Integrated Robotic Architectures (1998), AAAI Press: AAAI Press Palo Alto, CA)
[59] Pell, B.; Gamble, E.; Gal, E.; Keesing, R.; Kurien, J.; Millar, B.; Nayak, P. P.; Plaunt, C.; Williams, B., A hybrid procedural/deductive executive for autonomous spacecraft, (Wooldridge, M., Proc. 2nd International Conference on Autonomous Agents (1998), ACM Press: ACM Press New York)
[60] Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; Smith, B., Robust periodic planning and execution for autonomous spacecraft, (Proc. IJCAI-97. Proc. IJCAI-97, Nagoya, Japan (1997), Morgan Kaufmann: Morgan Kaufmann Los Altos, CA)
[61] Pell, B.; Sawyer, S.; Muscettola, N.; Smith, B.; Bernard, D. E., Mission operations with an autonomous agent, (Proc. IEEE Aerospace Conference. Proc. IEEE Aerospace Conference, Snowmass, CO (1998))
[62] Reiter, R., A theory of diagnosis from first principles, Artificial Intelligence. (Hamscher, W.; Console, L.; de Kleer, J., Readings in Model-Based Diagnosis (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 32, 57-96 (1987), Reprinted in: · Zbl 0643.68122
[63] Sacks, E. P.; Doyle, J., Prolegomena to any future qualitative physics, Computational Intelligence, 8, 2, 187-209 (1992)
[64] Selman, B.; Mitchell, D.; Levesque, H., Generating hard satisfiability problems, Artificial Intelligence, 81, 17-29 (1996) · Zbl 1508.68347
[65] Struss, P.; Dressler, O., Physical negation: integrating fault models into the General Diagnostic Engine, (Proc. IJCAI-89. Proc. IJCAI-89, San Mateo, CA (1989)). (Hamscher, W.; Console, L.; de Kleer, J., Readings in Model-Based Diagnosis (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 1318-1323, Reprinted in: · Zbl 0718.68085
[66] Tsamardinos, I.; Muscettola, N.; Morris, P., Fast transformation of temporal plans for efficient execution, (Proc. AAAI-98 (1998), AAAI Press: AAAI Press Cambridge, MA)
[67] Weld, D. S., An introduction to least commitment planning, AI Magazine, 15 (1994)
[68] (Weld, D. S.; de Kleer, J., Readings in Qualitative Reasoning about Physical Systems (1990), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA)
[69] Wilkins, D. E., Practical Planning (1988), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA
[70] Williams, B. C.; Nayak, P. P., Immobile robots: AI in the new millennium, AI Magazine, 17, 3, 16-35 (1996)
[71] Williams, B. C.; Nayak, P. P., A model-based approach to reactive self-configuring systems, (Proc. AAAI-96. Proc. AAAI-96, Portland, OR (1996), AAAI Press: AAAI Press Cambridge, MA), 971-978
[72] (Wooldridge, M., Proc. 2nd International Conference on Autonomous Agents (1998), ACM Press: ACM Press New York)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.