×

On the normal variations of a domain. (Sur les variations normales d’un domaine.) (French) Zbl 0907.49021

Summary: In domain optimization problems, normal variations of a reference domain are frequently used. We prove that such variations do not preserve the regularity of the domain. More precisely, we give a bounded domain whose boundary is \(m\) times differentiable and a scalar variation which is infinitely differentiable such that the deformed boundary is only \(m-1\) times differentiable. We prove in addition that the only normal variations which preserve the regularity are those with constant magnitude. This shows that the use of normal variations in an iterative approximation method for domain optimization generates a loss of regularity at each iteration, and thus it is better to use transverse variations which preserve the regularity of the domain.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] C. Bandle : Existence theorems, qualitative results and a priori bounds for a class of non-linear Dirichlet problems. Arch. Rational Mech. Anal., 58 1975, 219-238. Zbl0335.35046 MR454336 · Zbl 0335.35046 · doi:10.1007/BF00280742
[2] C. Bardos, O. Pironneau : Petites perturbations et équations d’Euler pour l’aéroélasticité. M2AN, 28, 1994, 463-497. Zbl0820.76071 MR1288508 · Zbl 0820.76071
[3] J. Bello, E. Fernández-Cara, J. Lemoine, J. Simon : The differentiability of the drag with respect to the variations of a lipschitz domain in a Navier-Stokes flow. SIAM J. Control Optim., 35, n^\circ 2 1997, 626-640. Zbl0873.76019 MR1436642 · Zbl 0873.76019 · doi:10.1137/S0363012994278213
[4] O. Bodart, P. Demeestère : Sentinels for the identification of an unknown boundary. Math. Models. Methods Appl. Sci., 7, n^\circ 6 1997, 871-885. Zbl0892.93022 MR1470911 · Zbl 0892.93022 · doi:10.1142/S021820259700044X
[5] D. Bresch, J. Simon : A remark on the loss of regularity due to normal variations of a domain. Z. Angew Math. Mech., 76, suppl. 2 ICIAM/GAMM 95, Applied Analysis 1996, 193-196. Zbl0885.49030 · Zbl 0885.49030
[6] D. Chenais, J. Monnier, J.-P. Vila : Optimisation de forme pour un système fluide-thermique. Application à l’industrie automobile. 27e Congrès d’Analyse Numérique, Super-Besse 1995.
[7] M. Chouilli, A. Henrot : Use of domain derivative to prove symmetry results in partial differential equations. Prépublication de Besançon, n^\circ 31, 1994.
[8] E. Fernández-Cara : Sobre la approximación numérica de un problema de control géométrico. Collectánea Mathemática, 3 (XXXIII), 1982, 225-247. Zbl0536.76037 MR738850 · Zbl 0536.76037
[9] R.H. Ghallagher, O.C. Zienkiewicz : Optimal structural design. Wiley, New York 1973. Zbl0291.73049 · Zbl 0291.73049
[10] P.R. Garabeddian, M.M. Schiffer : Convexity of domain functionnals. J. Anal. Math. 2 1953, 181-263. Zbl0052.33203 MR60117 · Zbl 0052.33203 · doi:10.1007/BF02825640
[11] P. Guillaume : Dérivées d’ordre supérieures en conception optimale de forme. Thèse, Université Paul Sabatier, Toulouse 1994.
[12] J. Hadamard : Mémoire sur le problème d’analyse relatif des plaques élastiques encastrées. Oeuvres de J. Hadamard, 2 1907Ed. C.N.R.S., Paris 1968. JFM39.1022.01 · JFM 39.1022.01
[13] A. Henrot, M. Pierre : Optimisation de forme : aspect théorique. À paraître.
[14] T. Masanao, N. Fujii : Second-order necessary conditions for domain optimization problems in elastic structures. J. Optim. Theory Appl., 72, n^\circ 2 1992, 355-402. Zbl0794.73048 MR1143202 · Zbl 0794.73048 · doi:10.1007/BF00940523
[15] M. Masmoudi : Outils pour la conception optimale de formes. Thèse d’état, Université de Nice 1987.
[16] F. Mignot, F. Murat, J.-P. Puel : Variations d’un point de retournement par rapport au domaine. Comm. P.D.E., 4 1979, 1263-1297. Zbl0422.35039 MR546644 · Zbl 0422.35039 · doi:10.1080/03605307908820128
[17] B. Morel : Utilisation en analyse numérique de la formule de variation de Hadamard. R.A.I.R.O., R-2 1973, 115-119. Zbl0293.65089 · Zbl 0293.65089
[18] F. Murat, J. Simon : Sur le contrôle par un domaine géométrique. Rapport du L.A. 189 n^\circ 76015, Université Pierre et Marie Curie, Paris 1976.
[19] O. Pironneau : Optimal shape design for elliptic systems. Springer-Verlag, New York 1984. Zbl0534.49001 MR725856 · Zbl 0534.49001
[20] P.-A. Raviart : Problèmes de perturbations singulières et modèles limites sur les équations de Vlasov-Maxwell. 27e Congrès National d’Analyse Numérique, Super-Besse 1995.
[21] B. Rousselet : Quelques résultats en optimisation de domaines. Thèse d’Etat, Université de Nice 1982.
[22] J. Simon : Differentiation with respect to the domain in boundary value problems. Numer. Funct. Optimiz., 2 (78) 1980, 649-687. Zbl0471.35077 MR619172 · Zbl 0471.35077 · doi:10.1080/01630563.1980.10120631
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.