×

Nonsharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion. (English) Zbl 0903.35026

Summary: When degenerate nonlinear diffusion is introduced into the Fisher equation, giving \(u_t= (uu_x)_x +u(1-u)\), the travelling wave structure changes so that there is a sharp-front wave for one particular wave speed, with smooth-front waves for all faster speeds. The sharp-front solution has been studied by a number of previous authors; the present paper is concerned with the smooth-front waves. The authors use heuristic arguments to derive a relationship between initial data and the travelling wave speed to which this initial data evolves. The relationship compares very well with the results of numerical simulations. The authors go on to consider the form of smooth-front waves with speeds close to that of the sharp-front solution. Using singular perturbation theory, they derive an asymptotic approximation to the wave which gives valuable information about the structure of the smooth-front solutions.

MSC:

35K55 Nonlinear parabolic equations
35K65 Degenerate parabolic equations
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugenics, 7, 353-369 (1937) · JFM 63.1111.04
[2] Kolmogorov, A.; Petrovsky, I.; Piscounov, N., Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Bull. Math., 1, 1-25 (1937) · Zbl 0018.32106
[3] Murray, J. D., Mathematical Biology (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0682.92001
[4] Skellam, J. G., Random dispersal in theoretical populations, Biometrika, 38, 196-218 (1951) · Zbl 0043.14401
[5] Holmes, E. E.; Lewis, M. A.; Banks, J. E.; Veit, R. R., Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75, 17-29 (1994)
[6] Sherratt, J. A.; Murray, J. D., Models of epidermal wound healing, (Proc. R. Soc. Lond. B, 241 (1990)), 29-36 · Zbl 0721.92010
[7] Sherratt, J. A.; Murray, J. D., Epidermal wound healing: The clinical implications of a simple mathematical model, Cell Transplantation, 1, 365-371 (1992)
[8] Carl, E. A., Population control in arctic ground squirrels, Ecology, 52, 395-413 (1971)
[9] Myers, J. H.; Krebs, C. J., Population cycles in rodents, Sci. Am., 6, 38-46 (1974)
[10] Gurney, W. S.C.; Nisbet, R. M., The regulation of inhomogeneous population, J. Theor. Biol., 52, 441-457 (1975)
[11] Gurney, W. S.C.; Nisbet, R. M., A note on nonlinear population transport, J. Theor. Biol., 56, 249-251 (1976)
[12] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J. Math. Biol., 79, 83-99 (1979)
[13] Okubo, A., Dynamical aspects of animal grouping: Swarms, schools, flocks and herds, Adv. Biophys., 22, 1-94 (1986)
[14] Aronson, D. G., Density dependent interaction systems, (Steward, W. H.; etal., Dynamics and Modelling of Reactive Systems (1980), Academic Press: Academic Press New York), 1161-1176 · Zbl 0619.93010
[15] Newman, W. I., Some exact solutions to a nonlinear diffusion problem in population genetics and combustion, J. Theor. Biol., 85, 325-334 (1980)
[16] Newman, W. I., The long time behaviour of the solution to a nonlinear diffusion problem in population genetics and combustion, J. Theor. Biol., 104, 473-484 (1983)
[17] Sánchez-Garduño, F.; Maini, P. K., Existence and uniqueness of a sharp front travelling wave in degenerate nonlinear diffusion Fisher-KPP equations, J. Math. Biol., 33, 163-192 (1994) · Zbl 0822.92021
[18] Sánchez-Garduño, F.; Maini, P. K., An approximation to a sharp front type solution of a density dependent reaction-diffusion equation, Appl. Math. Lett., 7, 1, 47-51 (1994) · Zbl 0803.35074
[19] Sánchez-Garduño, F.; Maini, P. K., Travelling wave phenomena in some degenerate reaction-diffusion equations, J. Diff. Eq., 117, 281-319 (1995) · Zbl 0821.35085
[20] Rothe, F., Convergence to travelling fronts in semilinear parabolic equations, (Proc. R. Soc. Edin., 80A (1978)), 213-234 · Zbl 0389.35024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.