×

Bloch wave homogenization and spectral asymptotic analysis. (English) Zbl 0901.35005

The authors consider a second order elliptic equation in a bounded periodically heterogeneous medium and the asymptotic behavior of its eigenvalues \((\lambda^k_{\varepsilon})^{-1}\) is studied as the structure period \(\varepsilon\) tends to zero. More precisely, the asymptotic of renormalized eigenvalues \(\varepsilon^{-2} \lambda^k_{\varepsilon}\), i.e. high frequency asymptotic, is considered. It is proved that this renormalized limit spectrum is devided into two parts: the so-called Bloch spectrum and the so-called boundary layer spectrum. The first one is defined explicitly as the spectrum of a family of new auxiliary problems, while the second corresponds to eigenfunctions concentrating at the boundary of the domain. In the case of a rectangular domain made of an entire periodicity cell, it is given an explicit description of the boundary layer spectrum.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35P05 General topics in linear spectral theory for PDEs
35J25 Boundary value problems for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aguirre, F.; Conca, C., Eigenfrequencies of a tube bundle immersed in a fluid, Appl. Math. Optim., 18, 1-38 (1988) · Zbl 0663.76003
[2] Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 6, 1482-1518 (1992) · Zbl 0770.35005
[3] Allaire, G.; Briane, M., Multiscale convergence and reiterated homogenization, (Proc. Roy. Soc. Edinburgh, 126A (1996)), 297-342 · Zbl 0866.35017
[4] Allaire, G.; Conca, C., Analyse asymptotique spectrale de l’équation des ondes, (Homogénéisation par ondes de Bloch. Homogénéisation par ondes de Bloch, C. R. Acad. Sci. Paris Série I Math., t.321 (1995)), 293-298 · Zbl 0844.35075
[5] Allaire, G.; Conca, C., Analyse asymptotique spectrale de l’équation des ondes, (Complétude du spectre de Bloch. Complétude du spectre de Bloch, C. R. Acad. Sci. Paris Série I Math., t.321 (1995)), 557-562 · Zbl 0844.35076
[6] Allaire, G.; Conca, C., Block wave homogenization for a spectral problem in fluid-solid structures, Arch. Rational. Mech. Anal., 135, 3, 117-257 (1996) · Zbl 0857.73008
[7] G. AllaireC. ConcaSIAM J. Math. Anal.; G. AllaireC. ConcaSIAM J. Math. Anal.
[8] Babusˇka, I., Solution of interface problems by homogenization I, II, III, SIAM J. Math. Anal., 8, 923-937 (1977) · Zbl 0402.35046
[9] Bakhvalov, N.; Panasenko, G., Homogenization: averaging processes in periodic media, (Mathematics and its applications, volume 36 (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0692.73012
[10] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic analysis for periodic structures (1978), North-Holland: North-Holland Amsterdam · Zbl 0411.60078
[11] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions in the half space, (Ito, K., Proc. of Intern. Symp. SDE. Proc. of Intern. Symp. SDE, Kyoto 1976 (1978), J. Wiley: J. Wiley New York), 21-40
[12] Bloch, F., Uber die Quantenmechanik der Electronen in Kristallgittern, Z. Phys., 52, 555-600 (1928) · JFM 54.0990.01
[13] Boccardo, L.; Marcellini, P., Sulla convergenza delle soluzioni di disequazioni variazionali, Ann. Mat. Pura Appl., 4, 137-159 (1977) · Zbl 0333.35030
[14] Castro, C.; Zuazua, E., Une remarque sur l’analyse asymptotique spectrale en homogénéisation, C. R. Acad. Sci. Paris Série. I Math., t.322, 1043-1047 (1996) · Zbl 0863.35011
[15] Castro, C.; Zuazua, E., Une remarque sur les séries de Fourier non-harmoniques et son applicationàla controˆlabilitédes cordes avec densitérégulière, C. R. Acad. Sci. Paris Sér. I Math., t.323, 365-370 (1996)
[16] Conca, C.; Planchard, J.; Vanninathan, M., Limiting behaviour of a spectral problem in fluid-solid structures, Asymptotic Analysis, 6, 365-389 (1993) · Zbl 0806.35133
[17] Conca, C.; Planchard, J.; Vanninathan, M., Fluids and periodic structures, (RMA, 38 (1995), J. Wiley & Masson: J. Wiley & Masson Paris) · Zbl 0910.76002
[18] Conca, C.; Vanninathan, M., A spectral problem arising in fluid-solid structures, Comput. Methods Appl. Mech. Engrg., 69, 215-242 (1988) · Zbl 0669.73071
[19] Conca, C.; Vanninathan, M., Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math., 57 (1997), in press · Zbl 0990.35019
[20] Dal Maso, G., An Introduction to Γ-Convergence (1993), Birkhäuser: Birkhäuser Boston · Zbl 0816.49001
[21] Figotin, A.; Kuchment, P., Band-gap structure of spectra of periodic dielectric and acoustic media. I, scalar model, SIAM J. Appl. Math., 56, 68-88 (1996) · Zbl 0852.35014
[22] Floquet, G., Sur leséquations différentielles linéairesàcoefficients périodiques, Ann. Ecole Norm. Sér., 12, 2, 47-89 (1883) · JFM 15.0279.01
[23] Gelfand, I. M., Expansion in series of eigenfunctions of an equation with periodic coefficients, Dokl. Akad. Nauk. SSSR., 73, 1117-1120 (1950)
[24] Gérard, P., Mesures semi-classiques et ondes de Bloch, (Séminaire Equations aux Dérivées Partielles 1990-1991, volume 16 (1991), Ecole Polytechnique: Ecole Polytechnique Palaiseau) · Zbl 0739.35096
[25] Gérard, C.; Martinez, A.; Sjostrand, J., A mathematical approach to the effective Hamiltonian in perturbed periodic problems, Comm. Math. Phys., 142, 217-244 (1991) · Zbl 0753.35057
[26] Gohberg, I. C.; Krein, M. G., Introduction to the theory of linear nonselfadjoint operators, (AMS, Translations of Mathematical Monographs, Vol. 18 (1969), Providence: Providence Rhode Island) · Zbl 0181.13504
[27] Jikov, V.; Kozlov, S.; Oleinik, O., Homogenization of Differential Operators (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0801.35001
[28] Kato, T., Perturbation theory for linear operators (1966), Springer-Verlag: Springer-Verlag Berlin · Zbl 0148.12601
[29] Kesavan, S., Homogenization of elliptic eigenvalue problems, I and II, Appl. Math. Optim., 5, 197-216 (1979) · Zbl 0428.35062
[30] Lions, J.-L., Some methods in the mathematical analysis of systems and their control (1981), Science Press: Science Press Beijing, Gordon and Breach, New York · Zbl 0542.93034
[31] Lions, P.-L.; Paul, T., Sur les mesures de Wigner, Revista Math. Iberoamer., 9, 553-618 (1993) · Zbl 0801.35117
[32] Markowich, P. A.; Mauser, N. J.; Poupaud, F., A Wigner function approach to semiclassical limits: electrons in a periodic potential, J. Math. Phys., 35, 1066-1094 (1994) · Zbl 0805.35106
[33] Morgan, R.; Babuska, I., An approach for constructing families of equations for periodic media. I and II, SIAM J. Math. Anal., 22, 16-33 (1991) · Zbl 0729.35010
[34] Moskow, S.; Vogelius, M., First order corrections to the homogenized eigenvalues of a periodic composite medium. A convergence proof, (Proc. Roy. Soc.. Proc. Roy. Soc., Edinburgh (1996)), to appear in · Zbl 0888.35011
[35] Murat, F.; Tartar, L., \(H\)-convergence, in Topics in the mathematical modeling of composite materials, (Cherkaev, A.; Kohn, R. V., series: Progress in Nonlinear Differential Equations and their Applications (1997), Birkhaüser: Birkhaüser Boston), French version: mimeographed notes, séminaire d’Analyse Fonctionnelle et Numérique de l’Universitéd’Alger, 1978
[36] Nguetseng, G., A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20, 3, 608-623 (1989) · Zbl 0688.35007
[37] Odeh, F.; Keller, J., Partial differential equations with periodic coefficients and Bloch waves in crystals, J. Math. Phys., 5, 11, 1499-1504 (1964) · Zbl 0129.46004
[38] Oleinik, O. A.; Shamaev, A. S.; Yosifian, G. A., On the limiting behaviour of a sequence of operators defined in different Hilbert’s spaces, Upsekhi Math. Nauk., 44, 157-158 (1989) · Zbl 0684.47002
[39] Planchard, J., Eigenfrequencies of a tube-bundle placed in a confined fluid, Comput. Methods Appl. Mech. Engrg., 30, 75-93 (1982) · Zbl 0483.70016
[40] Planchard, J., Global behaviour of large elastic tube-bundles immersed in a fluid, Comput. Mech., 2, 105-118 (1987) · Zbl 0635.73070
[41] Reed, M.; Simon, B., Methods of modern mathematical physics, IV Analysis of operators (1978), Academic Press: Academic Press New York · Zbl 0401.47001
[42] Rellich, F., Storungtheorie der Spektralzerlegung, Math. Ann., 113, 600-619 (1937) · JFM 62.0452.04
[43] Sánchez-Hubert, J.; Sánchez-Palencia, E., Vibration and coupling of continuous systems, (Asymptotic methods (1989), Springer Verlag: Springer Verlag Berlin) · Zbl 1079.35010
[44] Sánchez-Palencia, E., Non homogeneous media and vibration theory, (Lecture notes in physics, 127 (1980), Springer Verlag) · Zbl 0432.70002
[45] Santosa, F.; Symes, W., A dispersive effective medium for wave propagation in periodic composites, SIAM J. Appl. Math., 51, 984-1005 (1991) · Zbl 0741.73017
[46] Santosa, F.; Vogelius, M., First-order corrections to the homogenized eigenvalues of a periodic composite medium, SIAM J. Appl. Math., 53, 1636-1668 (1993) · Zbl 0808.35085
[47] Tartar, L., H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, (Proc. Roy. Soc. Edinburgh, 115A (1990)), 193-230 · Zbl 0774.35008
[48] Vanninathan, M., Homogenization and eigenvalue problems in perforated domains, (Proc. Indian Acad. Sci. Math. Sci., 90 (1981)), 239-271 · Zbl 0486.35063
[49] Wilcox, C., Theory of Bloch waves, J. Anal. Math., 33, 146-167 (1978) · Zbl 0408.35067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.