×

Linear fractional transformations of continued fractions with bounded partial quotients. (English) Zbl 0901.11024

Let \(\theta\) be a real number with continued fraction expansion \(\theta=[a_0,a_1,a_2,\dots]\), and let \(M=\left[\begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \right]\) be an integer matrix with \(\det(M)\neq 0\). Set \(K(\theta)=\sup_{i\geq 1}a_i\) and \(K_\infty\limsup_{i\geq 1}a_i\). Then \[ {1\over| \det(M)| }K_\infty(\theta)-2\leq K_\infty \Biggl({a\theta+b\over c\theta+d}\Biggr) \leq| \det(M)| (K_\infty(\theta)+2) \] and \[ K\Biggl( {a\theta+b\over c\theta+d} \Biggr)\leq| \det(M)| (K(\theta)+2)+| c(c\theta+d)| . \] The proofs use the type \(L(\theta)=\sup_{q\geq 1}(q\| q\theta\|)^{-1}\) and the Lagrange constant \[ L_\infty(\theta)= \limsup_{q\geq 1}(q\| q\theta\|)^{-1} \] for an irrational \(\theta\). The former follows from the facts \(L_{\infty}({a\theta+b\over c\theta+d})=L_{\infty}(\theta)\), and \(\sup(L_{\infty}({a\theta+b\over c\theta+d}))=m L_{\infty}(\theta)\) and \(\inf(L_{\infty}({a\theta+b\over c\theta+d}))\geq{1\over m}L_{\infty}(\theta)\), where \(M\) takes all the matrices such that \(| \det(M)| =m\). The latter follows from the result \[ L\Biggl( {a\theta+b\over c\theta+d} \Biggr)\leq| \det(M)| L(\theta)+| c(c\theta+d)| . \] The authors also show as one of the remarks that \[ {1\over| \det(M)| }L_\infty(\theta)\leq L_\infty \Biggl({a\theta+b\over c\theta+d}\Biggr) \leq| \det(M)| L_\infty(\theta). \]

MSC:

11J70 Continued fractions and generalizations
11J06 Markov and Lagrange spectra and generalizations
PDFBibTeX XMLCite
Full Text: DOI Numdam Numdam EuDML EMIS

References:

[1] Baker, A., A Concise Introduction to the Theory of Numbers, Cambridge University Press, 1984. · Zbl 0554.10001
[2] Chitelet, A., Contribution à la théorie des fractions continues arithmétiques, Bull. Soc. Math. France40 (1912), 1-25. · JFM 43.0285.02
[3] Chowla, S.D., Some problems of diophantine approximation (I), Math. Zeitschrift33 (1931), 544-563. · JFM 57.0237.01
[4] Cusick, T.W. and Flahive, M., The Markoff and Lagrange Spectra, American Mathematical Society, Providence, RI, 1989. · Zbl 0685.10023
[5] Cusick, T.W. and Mendès France, M., The Lagrange spectrum of a set, Acta Arith.34 (1979), 287-293. · Zbl 0409.10020
[6] Davenport, H., A remark on continued fractions, Michigan Math. J.11 (1964), 343-344. · Zbl 0125.02802
[7] Hall, M., On the sum and product of continued fractions, Annals of Math.48 (1947), 966-993. · Zbl 0030.02201
[8] Hardy, G.H. and Wright, E.M., An Introduction to the Theory of Numbers, Fifth Edition, Oxford University Press. · Zbl 0020.29201
[9] Hurwitz, A., Über die angenäherte Darstellungen der Zahler durch rationale Brüche, Math. Ann.44 (1894), 417-436. · JFM 25.0322.04
[10] Knuth, D.E., The Art of Computer Programming, Vol. II: Seminumerical Algorithms, Addison-Wesley, 1981. · Zbl 0477.65002
[11] Mendès France, M., Sur les fractions continues limitées, Acta Arith.23 (1973), 207-215. · Zbl 0228.10007
[12] Mendès France, M., The depth of a rational number, Topics in Number Theory (Proc. Colloq. Debrecen, 1974)Colloq. Soc. Janos Bolyai, vol. 13, North-Holland, Amsterdam, 1976, pp. 183-194. · Zbl 0333.10003
[13] Mendès France, M., On a theorem of Davenport concerning continued fractions, Mathematika23 (1976), 136-141. · Zbl 0359.10005
[14] Perron, O., Über die Approximation irrationaler Zahlen durch rationale” Sitz. Heidelberg. Akad. Wiss.XIIA (4. Abhandlung) (1921), 3-17. · JFM 48.0193.01
[15] Raney, G.N., On continued fractions and finite automata, Math. Annalen206 (1973), 265-283. · Zbl 0251.10024
[16] Schmidt, W., Diophantine Approximation, , vol. 785, Springer-Verlag, 1980. · Zbl 0421.10019
[17] Shallit, J.O., Continued fractions with bounded partial quotients: a survey, Enseign. Math.38 (1992), 151-187. · Zbl 0753.11006
[18] Stark, H.M., Introduction to Number Theory, Markham, 1970. · Zbl 0198.06401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.