×

Long-time behaviour of strong solutions of retarded nonlinear P. D. E. s. (English) Zbl 0891.35159

The paper deals with the following retarded PDE: \[ \mu\ddot u+ \gamma\dot u+ \Delta^2u- f\Biggl(\int_\Omega|\nabla u(x,t)|^2dx\Biggr) \Delta u+ \rho{\partial u\over\partial x_1}- q(u_t)= p_0(x),\quad x\in\Omega,\quad t>0, \] with boundary conditions \[ u\bigl|_{t=0+}= u_0,\quad \dot u\bigl|_{t=0+}= u_1,\quad u\bigl|_{t\in(- t_*,0)}= \varphi(x, t) \] and initial conditions \[ u\bigl|_{\partial\Omega}= \Delta u\bigl|_{\partial\Omega}= 0, \] where \(\Omega\subset\mathbb{R}^n\) is a bounded domain, \(u_t= u_t(\theta)= u(t+\theta)\), \(\theta\in (-t_*,0)\) is the retarded function. The authors prove existence of strong solutions and investigate the long-time behaviour of these solutions. The existence of a finite-dimensional attractor is proved as well as its continuous dependence on the parameters of the system.
Reviewer: D.Bainov (Sofia)

MSC:

35R10 Partial functional-differential equations
35L75 Higher-order nonlinear hyperbolic equations
35B40 Asymptotic behavior of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Babin, A.V. and Vishik, M.I. 1992. ”Attractors of Evolutionary Equations”. North-Holland:Amsterdam. · Zbl 0778.58002
[2] Berger M., J. Appl. Mech 22 pp 465– (1955)
[3] Boutet de Monvel L., Annali di Mat. pura ed applicata 171 (1997)
[4] Boutet L., C.R. Acad. Sci. Paris. SerI 322 pp 1001– (1996)
[5] DOI: 10.1007/BF01097291 · Zbl 0783.73046 · doi:10.1007/BF01097291
[6] DOI: 10.1070/RM1993v048n03ABEH001033 · doi:10.1070/RM1993v048n03ABEH001033
[7] Chueshov I.D., Lecture Notes (1991)
[8] Chueshov I.D., Math Notes 47 pp 401– (1990)
[9] Chueshov I.D., Math. Physics, Analysis, Geometry 2 pp 363– (1995)
[10] Dmitrieva Zh.N., J. of Soviet Mathematics 22 pp 48– (1978)
[11] Dowell, E.H. 1975. ”Aeroelastisity of Plates and Shells”. Leyden:Noordhoff International Publishing. · Zbl 0306.73039
[12] Hale J.K., Amer. Math. Soc (1998)
[13] Hale, J.K. ”Theory of Functional Differential Equations”. · Zbl 1092.34500
[14] DOI: 10.1016/0005-1098(78)90036-5 · Zbl 0385.93028 · doi:10.1016/0005-1098(78)90036-5
[15] Kapitanskii L.V., Leningrad Math J 2 pp 97– (1991)
[16] Krasil’shchikova, E.A. 1978. ”The Thin Wing in a Compressible Flow”. Nauka, In Russian
[17] DOI: 10.1070/RM1987v042n06ABEH001503 · Zbl 0687.35072 · doi:10.1070/RM1987v042n06ABEH001503
[18] Lions, J.L. 1969. ”Quelques Méthods de Résolutions des Problémes aux Limites Non Linéaires”. Paris:Dunod.
[19] Rezounenko A.V., Math. Physics, Analysis, Geometry 4 (1997)
[20] Sevcovic D., Commenr, Math. Univ. Carolinae 31 pp 283– (1990)
[21] DOI: 10.1007/BF01762360 · Zbl 0629.46031 · doi:10.1007/BF01762360
[22] Temam, R. 1988. ”Infinite Dimensional Dynamic Systems in Mechanics and Physics”. Berlin, New York:Springer. · Zbl 0662.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.