×

Scattering matrix in external field problems. (English) Zbl 0885.47029

Summary: We discuss several aspects of second quantized scattering operators \(\widehat S\) for fermions in external time-dependent fields. We derive our results on a general, abstract level having in mind as a main application potentials of the Yang-Mills type and in various dimensions. We present a new and powerful method for proving the existence of \(\widehat S\) which is also applicable to other situations like external gravitational fields. We also give two complementary derivations of the change of phase of the scattering matrix under generalized gauge transformations which can be used whenever our method of proving the existence of \(\widehat S\) applies. The first is based on a causality argument, i.e., \(S\) (including phase) is determined from a time evolution, and the second exploits the geometry of certain infinite-dimensional group extensions associated with the second quantization of one-particle operators. As a special case, we obtain a Hamiltonian derivation of the axial fermion-Yang-Mills anomaly and the Schwinger terms related to it via the descent equations, which is on the same footing and traces them back to a common root.

MSC:

47N50 Applications of operator theory in the physical sciences
81U20 \(S\)-matrix theory, etc. in quantum theory
47A40 Scattering theory of linear operators
81T13 Yang-Mills and other gauge theories in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF00750302 · Zbl 0781.22016 · doi:10.1007/BF00750302
[2] DOI: 10.1016/0022-247X(78)90032-X · Zbl 0399.46057 · doi:10.1016/0022-247X(78)90032-X
[3] DOI: 10.1063/1.523334 · doi:10.1063/1.523334
[4] DOI: 10.1063/1.523334 · doi:10.1063/1.523334
[5] DOI: 10.1007/BF00046582 · Zbl 0644.22012 · doi:10.1007/BF00046582
[6] DOI: 10.1063/1.530472 · Zbl 0809.46090 · doi:10.1063/1.530472
[7] DOI: 10.1090/conm/062/878376 · doi:10.1090/conm/062/878376
[8] Shale D., J. Math. Mech. 14 pp 315– (1965)
[9] DOI: 10.1063/1.523295 · doi:10.1063/1.523295
[10] DOI: 10.1063/1.530744 · Zbl 0805.47069 · doi:10.1063/1.530744
[11] DOI: 10.1007/BF01617990 · Zbl 0336.46062 · doi:10.1007/BF01617990
[12] DOI: 10.1063/1.529765 · doi:10.1063/1.529765
[13] DOI: 10.1016/0550-3213(85)90543-7 · doi:10.1016/0550-3213(85)90543-7
[14] DOI: 10.1016/0370-2693(94)91372-2 · doi:10.1016/0370-2693(94)91372-2
[15] DOI: 10.1016/0040-9383(65)90057-1 · Zbl 0161.34501 · doi:10.1016/0040-9383(65)90057-1
[16] DOI: 10.1007/BF01229200 · Zbl 0648.22013 · doi:10.1007/BF01229200
[17] DOI: 10.1007/BF02096983 · Zbl 0716.58033 · doi:10.1007/BF02096983
[18] DOI: 10.1063/1.531000 · Zbl 0856.46045 · doi:10.1063/1.531000
[19] DOI: 10.1007/BF01213402 · Zbl 1223.81143 · doi:10.1007/BF01213402
[20] DOI: 10.1007/BF01018976 · doi:10.1007/BF01018976
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.