Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 0871.39008
Nowakowska, W.; Werbowski, J.
Oscillation of linear functional equations of higher order.
(English)
[J] Arch. Math., Brno 31, No.4, 251-258 (1995). ISSN 0044-8753; ISSN 1212-5059/e

Let $X$ be an unbounded subset of $[0,+\infty)$. Given $f:X\to X$ and $Q_0, Q_2, \dots, Q_N:X \to (0,+\infty)$ the authors consider the equation $$\varphi \bigl(f(x)\bigr) = Q_0(x) \varphi(x)+ Q_2(x)\varphi \bigl(f^2(x)\bigr) + \cdots+ Q_N(x)\varphi \bigl(f^N(x) \bigr) \tag *$$ and prove the following Theorem:\par Suppose $f(x)\ne x$ for $x\in X$ and $\lim_{x\to\infty} f(x)= +\infty$. If $$\liminf_{x\to\infty} \sum^N_{k=2} Q_k(x) \prod^{k-1}_{j=1} Q_0 \bigl(f^j (x)\bigr) > {1\over 4}$$ or $$\liminf_{x\to\infty} \sum^{N-2}_{k=0} G\bigl(f^k(x) \bigr) \prod^{N-1}_{j=1} Q_0 \bigl(f^{k+j} (x)\bigr) >\left(1- {1\over N} \right)^N$$ where $$G(x)= \sum^{N-1}_{k=2} Q_k(x) Q_{N+1-k} \bigl(f^{k-1} (x)\bigr) +Q_N(x),$$ and $\varphi: X\to\bbfR$ is a solution of (*) such that $\sup \{|\varphi (x)|:$ $x\in [x_0,+\infty) \cap X\} >0$ for any $x_0 \in [0,+\infty)$, then $\varphi$ oscillates, i.e. there exists a sequence $(x_n)$ of elements of $X$ such that $\lim_{n\to \infty} x_n= +\infty$ and $\varphi (x_n) \varphi(x_{n+1}) \le 0$ for every $n\in \bbfN$.
[K.Baron (Katowice)]
MSC 2000:
*39B12 Iteraterative functional equations
39B22 Functional equations for real functions
39B72 Functional inequalities involving unknown functions

Keywords: iterative functional equation; recurrence equation; oscillatory solution

Highlights
Master Server