×

Koszul duality patterns in representation theory. (English) Zbl 0864.17006

This paper has three parts. In the first part the authors give a general treatment of Koszul rings and Koszul duality. In the words of the authors a Koszul ring is a \(\mathbb{Z}\)-graded ring which is “as close to being semisimple as it possibly can be”. Among other things they prove: (1) a Koszul ring is quadratic; (2) a quadratic ring \(A\) is Koszul if its Koszul complex is a resolution of \(A_0\); (3) the quadratic dual of a Koszul ring is Koszul; (4) a numerical criteria for a graded ring over a field to be Koszul; and (5) an equivalence between triangulated categories of certain derived categories of \(A\)-modules (resp. \(A^!\)-modules).
The second part contains an application of the theory developed in part one to the representation theory of semisimple Lie algebras. They show that if \(\mathcal B\) is the trivial block (or in fact more generally the block corresponding to any fixed central character) in the BGG category \(\mathcal O\) then \(E = \text{Ext}^\bullet_{\mathcal O}(L,L)\) is a Koszul ring. Here \(L\) is the direct sum of all simple modules in \(\mathcal B\)). Moreover, the dual of \(E\) plays the same role in a certain subcategory of \(\mathcal O\). This generalizes the selfduality theorem conjectured by the first two authors (in an unpublished preprint from 1986) and proved by the third author (in a likewise unpublished preprint from 1989). (The authors point out in the introduction that the present paper is the result of their efforts to join these two earlier “partially wrong and quite incomplete” preprints). As an easy consequence of these results the authors prove that Verma modules (as well as other important classes of modules) in \(\mathcal O\) are rigid, i.e. have unique Loewy series [cf. R. S. Irving’s results in Ann. Sci. Éc. Norm. Supér., IV. Sér. 21, 47-65 (1988; Zbl 0706.17006)].
In the third part the authors consider Koszul rings arising from what they call “mixed geometry”. They study here certain categories of mixed perverse sheaves on a variety stratified by affine spaces (such as the flag varieties).

MathOverflow Questions:

Augmented algebras over semisimple ring

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B35 Universal enveloping (super)algebras
14M15 Grassmannians, Schubert varieties, flag manifolds
22E46 Semisimple Lie groups and their representations

Citations:

Zbl 0706.17006
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jeffrey Adams, Dan Barbasch, and David A. Vogan Jr., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, vol. 104, Birkhäuser Boston, Inc., Boston, MA, 1992. · Zbl 0756.22004
[2] Jörgen Backelin, A distributiveness property of augmented algebras and some related homological results, Ph. D. Thesis, Stockholm, 1982.
[3] Dan Barbasch, Filtrations on Verma modules, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 489 – 494 (1984). · Zbl 0581.17002
[4] Hyman Bass, Algebraic \?-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0174.30302
[5] Alexandre Beĭlinson and Joseph Bernstein, Localisation de \?-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15 – 18 (French, with English summary). · Zbl 0476.14019
[6] A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel\(^{\prime}\)fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1 – 50. · Zbl 0790.22007
[7] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5 – 171 (French). · Zbl 0536.14011
[8] Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755 – 782 (1984) (French). · Zbl 0537.53056
[9] Joseph Bernstein, Trace in categories, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 417 – 423. · Zbl 0747.17007
[10] Jörgen Backelin and Ralf Fröberg, Koszul algebras, Veronese subrings and rings with linear resolutions, Rev. Roumaine Math. Pures Appl. 30 (1985), no. 2, 85 – 97. · Zbl 0583.16017
[11] J. N. Bernstein and S. I. Gel\(^{\prime}\)fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245 – 285. · Zbl 0445.17006
[12] Alexander A. Beilinson and Victor Ginsburg, Mixed categories, Ext-duality and representations (results and conjectures), Preprint, 1986.
[13] I. N. Bernšteĭn, I. M. Gel\(^{\prime}\)fand, and S. I. Gel\(^{\prime}\)fand, Schubert cells, and the cohomology of the spaces \?/\?, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3 – 26 (Russian).
[14] I. N. Bernšteĭn, I. M. Gel\(^{\prime}\)fand, and S. I. Gel\(^{\prime}\)fand, Algebraic vector bundles on \?\(^{n}\) and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66 – 67 (Russian). A. A. Beĭlinson, Coherent sheaves on \?\(^{n}\) and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68 – 69 (Russian).
[15] A. A. Beĭlinson, V. A. Ginsburg, and V. V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), no. 3, 317 – 350. · Zbl 0695.14009
[16] A. Beĭlinson, R. MacPherson, and V. Schechtman, Notes on motivic cohomology, Duke Math. J. 54 (1987), no. 2, 679 – 710. · Zbl 0632.14010
[17] Intersection cohomology, Progress in Mathematics, vol. 50, Birkhäuser Boston, Inc., Boston, MA, 1984. Notes on the seminar held at the University of Bern, Bern, 1983; Swiss Seminars.
[18] Luis G. Casian and David H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987), no. 4, 581 – 600. · Zbl 0624.22010
[19] Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511 – 534. · Zbl 0801.20013
[20] Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137 – 252 (French). · Zbl 0456.14014
[21] Thomas J. Enright and Brad Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94. · Zbl 0621.17004
[22] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. · Zbl 0212.26101
[23] Ronald S. Irving, The socle filtration of a Verma module, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 47 – 65. · Zbl 0706.17006
[24] Ronald S. Irving, A filtered category \?_{\?} and applications, Mem. Amer. Math. Soc. 83 (1990), no. 419, vi+117. · Zbl 0715.22017
[25] Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. · Zbl 0654.20039
[26] Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63 – 102. · Zbl 0799.18007
[27] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165 – 184. · Zbl 0499.20035
[28] David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185 – 203. · Zbl 0461.14015
[29] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. · Zbl 0709.18001
[30] Clas Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 291 – 338.
[31] R. Mirollo and K. Vilonen, Bernstein-Gel\(^{\prime}\)fand-Gel\(^{\prime}\)fand reciprocity on perverse sheaves, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 311 – 323. · Zbl 0651.14010
[32] Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39 – 60. · Zbl 0261.18016
[33] Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221 – 333. · Zbl 0727.14004
[34] Wolfgang Soergel, Équivalences de certaines catégories de \?-modules, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 15, 725 – 728 (French, with English summary). · Zbl 0623.17005
[35] W. Soergel, \?-cohomology of simple highest weight modules on walls and purity, Invent. Math. 98 (1989), no. 3, 565 – 580. · Zbl 0781.22011
[36] Wolfgang Soergel, Parabolisch-singuläre Dualität für Kategorie \({{\mathcal O}}\), Preprint MPI/89-68, 1989.
[37] Wolfgang Soergel, Kategorie \?, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421 – 445 (German, with English summary). · Zbl 0747.17008
[38] Wolfgang Soergel, Langlands’ philosophy and Koszul duality, Preprint, 1992. · Zbl 1001.22010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.