×

A classification of generalised state space reduction methods for linear multivariable systems. (English) Zbl 0859.93024

The aim of this paper is to establish two algorithms which reduce a linear multivariable system \(\Sigma\), described by a polynomial matrix model of the form: \[ A(\rho)\beta(t)= B(\rho)u(t), \qquad y(t)= C(\rho)\beta(t)+ D(\rho)u(t), \tag{\(\Sigma\)} \] to an equivalent model in generalized state space form. Here \(\rho=d/dt\), \(A(\rho)\in\mathbb{R} [\rho]^{r\times r}\) with \(\text{rank}_\mathbb{R} A(\rho)=r\), \(B(\rho)\in \mathbb{R}[\rho]^{r\times m}\), \(C(\rho)\in \mathbb{R}[\rho]^{p\times r}\), \(D(\rho)\in \mathbb{R}[\rho]^{p\times m}\), \(\beta(t)\) is the pseudostate of \(\Sigma\), \(u(t)\) the input vector and \(y(t)\) the output vector.
More precisely, the authors solve the problem of determining a system: \[ E\dot x(t)= Ax(t)+ Bu(t), \qquad y(t)= Cx(t)+ Du(t) \tag{\({\Sigma_R}\)} \] equivalent to \(\Sigma\). This equivalence means that they exhibit identical system properties. The first algorithm is based on the realization of \({\mathcal T}(s)\) defined by: \[ {\mathcal T}(\rho)=\begin{pmatrix} A(\rho) &B(\rho) &0\\ -C(\rho) &D(\rho) &I_p\\ 0 &-I_m &0\end{pmatrix}\in \mathbb{R}[\rho]^{\bar r\times\bar r}, \qquad \bar r=r+p+m, \] while the second algorithm is based on a realization of \({\mathcal T}(s)^{-1}\). In fact, all the known reduction algorithms can be classified by these two different theoretical reduction algorithms which are mentioned above.

MSC:

93C05 Linear systems in control theory
93C35 Multivariable systems, multidimensional control systems
93B11 System structure simplification
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] B. D. O. Anderson W. A. Coppel, D. J. Cullen: Strong system equivalence (I). J. Austral. Math. Soc. Ser. B 27 (1985), 194-222. · Zbl 0594.93015 · doi:10.1017/S0334270000004860
[2] O. H. Bosgra, A. J. J. Van Der Weiden: Realisations in generalised state-space form for polynomial system matrices, and the defìnition of poles, zeros and decoupling zeros at infinity. Internat. J. Control 33 (1981), 393-411. · Zbl 0464.93021 · doi:10.1080/00207178108922932
[3] G. E. Hayton A. B. Walker, A. C. Pugh: Infinite frequency structure preserving transformations for general polynomial system matrices. Internat. J. Control 52 (1990), 1-14. · Zbl 0702.93021 · doi:10.1080/00207179008953521
[4] N. P. Karampetakis, A. I. G. Vardulakis: Matrix fractions and full system equivalence. IMA J. Math. Control Inform. 9 (1992), 147-160. · Zbl 0777.93052 · doi:10.1093/imamci/9.2.147
[5] N. P. Karampetakis, A. I. G. Vardulakis: Generalized state-space system matrix equivalents of a Rosenbrock system matrix. IMA J. Math. Control Inform. 10 (1993), 323-344. · Zbl 0807.93009 · doi:10.1093/imamci/10.4.323
[6] T. Shaohua, J. Vandewalle: A singular system realisation for arbitrary matrix fraction descriptions. ISCAS’88, pp. 615-618.
[7] A. I. G. Vardulakis: Linear Multivariable Control, Algebraic Analysis and Synthesis Methods. Nelson-Wiley, London 1991. · Zbl 0751.93002
[8] A. I. G. Vardulakis: On the transformation of a polynomial matrix model of a linear multivariable system to generalised state space form. Proceedings of the 30th IEEE Conference on Decision and Control, Brighton 1991, U.K., pp. 11-13.
[9] G. C. Verghese: Infinite Frequency Behavior in Generalized Dynamical Systems. P\?.D. Dissertation, Stanford Univ., Stanford, CA 1978.
[10] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York 1974. · Zbl 0291.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.