×

Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier-Stokes equation. (English) Zbl 0859.35011

The authors study a generalization of the vorticity formulation of the 2D-Navier-Stokes equations, that is \(w_t-\Delta w=\text{div}(\underline f(x,w)w)\) with suitable assumptions on the vector field \(\underline f\). They optimize the constants in the \(L_p-L_q\)-estimate \[ |w(.,t)|_q\leq C\cdot t^{-{n\over 2}({1\over p}-{1\over q})}|w(.,0)|_p,\quad 1\leq p\leq q, \] and give even decay results for \(w\) in \(L_1\), as well as spatial estimates. The results are sharp to some extent, yet the authors missed some earlier papers, where qualitatively similar results can be found, e.g. M. E. Schonbek [Nonlinear Anal., Theory Methods, Appl. 10, 943-956 (1986; Zbl 0617.35060)] and Y. Giga, T. Miyakawa and H. Osada [Arch. Ration. Mech. Anal. 104, No. 3, 223-250 (1988; Zbl 0666.76052)].

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L65 Hyperbolic conservation laws
35Q30 Navier-Stokes equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Burkholder, Martingale transforms , Ann. Math. Statist. 37 (1966), 1494-1504. · Zbl 0306.60030
[2] E. A. Carlen, Some integral identities and inequalities for entire functions and their application to the coherent state transform , J. Funct. Anal. 97 (1991), no. 1, 231-249. · Zbl 0743.46018
[3] E. A. Carlen and P. Krée, \(L^ p\) estimates on iterated stochastic integrals , Ann. Probab. 19 (1991), no. 1, 354-368. · Zbl 0721.60052
[4] E. A. Carlen and M. Loss, Extremals of functionals with competing symmetries , J. Funct. Anal. 88 (1990), no. 2, 437-456. · Zbl 0705.46016
[5] E. A. Carlen and M. Loss, Sharp constant in Nash’s inequality , Internat. Math. Res. Notices (1993), no. 7, 213-215. · Zbl 0822.35018
[6] B. Davis, On the \(L\spp\) norms of stochastic integrals and other martingales , Duke Math. J. 43 (1976), no. 4, 697-704. · Zbl 0349.60061
[7] E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels , Amer. J. Math. 109 (1987), no. 2, 319-333. JSTOR: · Zbl 0659.35009
[8] E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians , J. Funct. Anal. 59 (1984), no. 2, 335-395. · Zbl 0568.47034
[9] E. B. Fabes and D. W. Stroock, A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash , Arch. Rational Mech. Anal. 96 (1986), no. 4, 327-338. · Zbl 0652.35052
[10] Y. Giga and T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation , Comm. Math. Phys. 117 (1988), no. 4, 549-568. · Zbl 0661.76018
[11] L. Gross, Logarithmic Sobolev inequalities , Amer. J. Math. 97 (1976), no. 4, 1061-1083. JSTOR: · Zbl 0318.46049
[12] T. Kato, Strong \(L^p\) solutions of the Navier-Stokes equation in \(\mathbbR^m\), with applications to weak solutions , Math. Z. 187 (1984), no. 4, 471-480. · Zbl 0545.35073
[13] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces , Bol. Soc. Brasil Mat. 22 (1992), no. 2, 127-155. · Zbl 0781.35052
[14] T. Kato, The Navier-Stokes equation for an incompressible fluid in \(\mathbbR^2\) with a measure as the initial vorticity , Differential Integral Equations 7 (1994), no. 3-4, 949-966. · Zbl 0826.35094
[15] J. F. Nash, Jr., Continuity of solutions of parabolic and elliptic equations , Amer. J. Math. 80 (1958), 931-954. JSTOR: · Zbl 0096.06902
[16] M. E. Schönbek, Large time behaviour of solutions to the Navier-Stokes equations , Comm. Partial Differential Equations 11 (1986), no. 7, 733-763. · Zbl 0607.35071
[17] D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin, 1979. · Zbl 0426.60069
[18] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on \(\mathbbR^n\) , J. London Math. Soc. (2) 35 (1987), no. 2, 303-313. · Zbl 0652.35095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.